Для связи в whatsapp +905441085890

Помощь по математике — решение заданий и задач онлайн

Оглавление:

Помощь по математике
Здравствуйте! Я Людмила Анатольевна Фирмаль, занимаюсь помощью студентам более 17 лет. У меня своя команда грамотных, сильных преподавателей. Мы справимся с любой поставленной перед нами работой технического и гуманитарного плана. И неважно – она по объёму на две формулы или огромная, сложно структурированная, на 125 страниц! Нам по силам всё, поэтому не стесняйтесь, присылайте.
Если что-то непонятно — вы всегда можете написать мне в WhatsApp и я вам помогу!

Как получить помощь в выполнении заданий по математике

Вы можете написать сообщение в WhatsApp. После этого я оценю ваш заказ и укажу стоимость и срок выполнения вашей работы. Если условия Вас устроят, Вы оплатите, и преподаватель, который ответственен за вашу работу, начнёт выполнение и в согласованный срок или, возможно, раньше срока Вы получите файл готовой работы в личные сообщения.

Сколько стоит помощь

Стоимость помощи зависит от задания и требований Вашего учебного заведения. На цену влияют: сложность, количество заданий и срок выполнения. Поэтому для оценки стоимости заказа максимально качественно сфотографируйте или пришлите файл задания, при необходимости, загружайте поясняющие фотографии лекций, файлы методичек, указывайте свой вариант.

Какой срок выполнения

Минимальный срок выполнения составляет 2-4 дня, но помните, срочные задания оцениваются дороже.

Как оплатить

Сначала пришлите задание, я оценю, после вышлю вам форму оплаты, в которой можно оплатить с баланса мобильного телефона, картой Visa и MasterCard, apple pay, google pay.

Гарантии и исправление ошибок

В течение 1 года с момента получения Вами готового решения действует гарантия. В течении 1 года я и моя команда исправим любые ошибки.

Чуть ниже я предоставила примеры оформления работ по математике, так я буду оформлять ваши работы если закажите у меня.

Кроме примеров, я разместила и полный курс теории в виде лекций, если вдруг вы захотите попробовать сами решить.

Элементы линейной алгебры

  1. Матрица
  2. Операции над матрицами
  3. Определитель матрицы
  4. Обратная матрица
  5. Системы линейных уравнений n*n
  6. Ранг матрицы
  7. Системы линейных уравнений m*n

Пример оформления заказа1.4.

Задана система линейных алгебраических уравнений:

Помощь по математике

Требуется, используя метод Гаусса, найти общее и соответствующее ему базисное решение заданной системы уравнений.

► Совместность системы. Выпишем расширенную матрицу системы Помощь по математике, найдем ее ранг и одновременно ранг матрицы коэффициентов Помощь по математике заданной системы уравнений:

Помощь по математике

Для этого с помощью серии элементарных преобразований приведем расширенную матрицу системы к трапециевидной форме.

Вначале исключим переменную Помощь по математике из всех уравнений, кроме первого. Для этого умножим первую строку матрицы Помощь по математике на коэффициент —2/1 = —2 и почленно сложим полученную строку со второй строкой расширенной матрицы. Затем умножим первую строку матрицы Помощь по математике на—1/1 = — 1 и почленно сложим полученную строку с третьей строкой расширенной матрицы:

Помощь по математике

Заметим, что в полученной матрице вторая и третья строки содержат только отрицательные ненулевые элементы. Для большего удобства запишем эти строки в эквивалентную матрицу с обратными знаками. Затем исключим переменную у из третьего уравнения. Для этого умножим вторую строку матрицы Помощь по математике на коэффициент — 1/1 = —1 и почленно сложим полученную строку с третьей строкой расширенной матрицы:

Помощь по математике

В результате получим эквивалентную запись расширенной матрицы Помощь по математике и матрицы коэффициентов системы Помощь по математике в трапециевидной форме:

Помощь по математике

Как видно, ранг матрицы коэффициентов системы равен 3 и добавлением столбца не может быть увеличен. Из этого следует, что исходная система уравнений совместна.

Решение системы. Найдем общее решение полученной системы, воспользовавшись ее трапециевидной структурой

Помощь по математике

Так как число неизвестных системы Помощь по математике больше числа уравнений Помощь по математике, то переменные необходимо разделить на свободные и базисные. Число базисных переменных будет равно рангу матрицы коэффициентов системы Помощь по математике. Выберем в качестве базисных три произвольные переменные такие, что определитель, составленный из их коэффициентов, будет отличен от нуля. Пусть это будут переменные Помощь по математике:

Помощь по математике

Тогда переменная Помощь по математике остается свободной. Выразим через Помощь по математике базисные переменные Помощь по математике, перенося Помощь по математике в правую часть равенства, начиная с последнего.

Из третьего уравнения найдем выражение для Помощь по математике:

Помощь по математике

Из второго уравнения найдем выражение для Помощь по математике:

Помощь по математике

Наконец, из первого уравнения найдем выражение для Помощь по математике:

Помощь по математике

Общее решение заданной системы уравнений найдено:

Помощь по математике

Соответствующее ему базисное решение найдем приравняв к нулю свободную переменную, т.е. при Помощь по математике = 0:

Помощь по математике

Матрицы и квадратичные формы

  1. Собственные значения и собственные векторы матрицы
  2. Квадратичные формы в матричной записи

Элементы векторной алгебры и аналитической геометрии

  1. Декартовы координаты
  2. Векторы и операции над ними
  3. Линейная зависимость и координаты векторов
  4. Линейные операции над векторами в координатной форме
  5. Уравнение прямой на плоскости
  6. Уравнения прямой и плоскости в пространстве
  7. Уравнения линий второго порядка на плоскости
  8. Эллипс
  9. Гипербола
  10. Парабола

Пример оформления заказа2.4.

Дано уравнение окружности

Помощь по математике

Требуется найти координаты центра и радиус окружности.

► Выделяя полные квадраты для членов, содержащих Помощь по математике, и членов, содержащих Помощь по математике, приведем это уравнение к виду

Помощь по математике

Таким образом, центр данной окружности находится в точке Помощь по математике(1; —2), а радиус окружности Помощь по математике.

Пример оформления заказа2.5.

Дано уравнение гиперболы

Помощь по математике

Требуется найти параметры Помощь по математике гиперболы.

► Приведем данное уравнение к каноническому виду

Помощь по математике

Для этого разделим заданное уравнение на 36:

Помощь по математике

Отсюда следует, что действительная полуось гиперболы Помощь по математике, а мнимая полуось Помощь по математике. По формуле Помощь по математикеПомощь по математике т.е. координаты фокусов Помощь по математике. Эксцентриситет гиперболы равен Помощь по математике

Введение в анализ функций одной переменной

  1. Предел последовательности
  2. Функция одной переменной
  3. Предел функции
  4. Бесконечно малые и бесконечно большие функции
  5. Раскрытие неопределённостей
  6. Непрерывность функции
  7. Асимптоты графика функции

Пример оформления заказа3.7.

Найти асимптоты графика функции

Помощь по математике

► Так как функция непрерывна на всей оси, кроме точки Помощь по математике то вертикальная асимптота может существовать лишь в этой точке:

Помощь по математике

и, следовательно, прямая Помощь по математике вертикальная асимптота.

Найдем наклонные асимптоты. Так как

Помощь по математике

то прямая

Помощь по математике

является наклонной асимптотой.

Дифференциальное исчисление функций одной переменной

  1. Определение производной функции
  2. Производные основных элементарных функций
  3. Дифференциал функции
  4. Производные и дифференциалы высших порядков
  5. Теоремы о дифференцируемых функциях
  6. Правило Лопиталя

Пример оформления заказа4.1.

Вычислить предел из примера 3.3 (п.3.5) с применением правила Лопиталя.

► В данном пределе при Помощь по математике числитель и знаменатель дроби неограниченно убывают, т.е. мы сталкиваемся с неопределенностью вида

Помощь по математике

Сравнивая два приема раскрытия неопределенностей делаем вывод, что применение правила Лопиталя существенно снижает трудоемкость процесса.

Исследование функций

Одним из важнейших приложений производной является ее применение к исследованию функций и построению графиков.

  1. Возрастание и убывание функции
  2. Максимум и минимум функции
  3. Наибольшее и наименьшее значение функции на отрезке
  4. Выпуклость графика функции. Точки перегиба

Схема исследования функции и построения ее графика

  1. Найти область определения функции;
  2. Исследовать функцию на непрерывность и найти асимптоты графика функции;
  3. Найти критические точки первого рода, интервалы возрастания, убывания функции и точки ее экстремума;
  4. Найти критические точки второго рода, интервалы выпуклости, вогнутости графика функции и точки перегиба;
  5. Найти точки пересечения графика функции с осями координат и при необходимости составить таблицу дополнительных точек;
  6. Построить график функции Помощь по математике в системе координат Помощь по математике на основании полученных данных.

Пример оформления заказа4.2.

Требуется, используя методы дифференциального исчисления, провести исследование заданных функций и на основании полученных данных построить их графики:

Помощь по математике

► 1. Областью определения данной функции являются все действительные значения аргумента Помощь по математике:

Помощь по математике

следовательно, функция непрерывна на всей числовой прямой и ее график не имеет вертикальных асимптот.

  • Выясним наличие у графика заданной функции наклонных асимптот. Для определения коэффициентов уравнения асимптоты Помощь по математике воспользуемся формулами:
Помощь по математике

В нашем случае имеем:

Помощь по математике

Следовательно, график функции не имеет наклонных асимптот.

  • Исследуем функцию на экстремумы и определим интервалы монотонности. С этой целью найдем и приравняем к нулю ее производную:
Помощь по математике

Решая полученное квадратное уравнение, находим координаты двух критических точек первого рода:

Помощь по математике
Помощь по математике

Разбиваем область определения функции этими точками на части и по знаку ее первой производной выявляем интервалы монотонности и наличие экстремумов.

Помощь по математике
  • Определим точки перегиба графика функции и интервалы его выпуклости и вогнутости. Для этого найдем вторую производную заданной функции и приравняем ее к нулю:
Помощь по математике

Решая полученное уравнение, находим координаты критической точки второго рода:

Помощь по математике

Разбиваем область определения функции полученной точкой на части и по знаку ее второй производной выявляем интервалы выпуклости и наличие точки перегиба.

Помощь по математике
  • Для построения графика в выбранной системе координат изобразим: точку максимума Помощь по математике, минимума Помощь по математике, перегиба Помощь по математике и точку пересечения графика функции с осью Помощь по математике — точку Помощь по математике. В качестве дополнительных точек можно использовать точки пересечения графика функции с осью Помощь по математике и Помощь по математике
  • С учетом результатов проведенных исследований построим график функции и все характерные точки в системе координат Помощь по математике онлайн (см. рис. 4.5).
Помощь по математике онлайн

► 1. Областью определения данной функции являются все действительные значения аргумента Помощь по математике онлайн, за исключением точки в которой знаменатель дроби становится равен нулю. Это значит, что функция непрерывна на всей числовой прямой, кроме точки Помощь по математике онлайн = 4 в которой она претерпевает разрыв:

Помощь по математике онлайн
  • Для классификации точки разрыва вычислим односторонние пределы функции в этой точке:
Помощь по математике онлайн
Помощь по математике онлайн

Таким образом, данная точка является точкой разрыва второго рода, а прямая Помощь по математике онлайн = 4 — вертикальной асимптотой графика.

Выясним наличие у графика заданной функции наклонных асимптот. Для определения коэффициентов уравнения асимптоты Помощь по математике онлайн воспользуемся формулами:

Помощь по математике онлайн

В нашем случае имеем:

Помощь по математике онлайн

Из этого следует, что прямая Помощь по математике онлайн является наклонной асимптотой графика исследуемой функции.

  • Исследуем функцию на экстремумы и определим интервалы монотонности. С этой целью найдем ее критические точки первого рода для чего приравняем к нулю первую производную функции:
Помощь по математике онлайн

Решая полученное квадратное уравнение, находим координаты двух критических точек первого рода:

Помощь по математике онлайн

Разбиваем область определения функции найденными точками на части и на основании знака ее первой производной выявляем интервалы монотонности и наличие экстремумов.

Помощь по математике онлайн
  • Для определения точек перегиба и интервалов выпуклости и вогнутости графика необходимо отыскать критические точки второго рода для заданной функции. С этой целью найдем вторую производную функции и приравняем ее числитель к нулю:
Помощь по математике онлайн

Отсюда следует, что исследуемая функция не имеет ни одной точки перегиба.

В таком случае, разобьем область определения функции точкой разрыва Помощь по математике онлайн = 4 на две части, в каждой из которых установим знак второй производной.

Помощь по математике онлайн
  • Для построения графика в выбранной системе координат изобразим: точку максимума Помощь по математике онлайн, минимума Помощь по математике онлайн. точку пересечения вертикальной асимптоты с наклонной — точку Помощь по математике онлайн и точку пересечения графика функции с осью Помощь по математике онлайн — точку Помощь по математике онлайн.
  • С учетом результатов проведенных исследований построим график функции, его асимптоты и все характерные точки в системе координат Помощь по математике онлайн (см. рис. 4.6).
Помощь по математике онлайн

Дифференциальное исчисление функций многих переменных

  1. Функция многих переменных
  2. Непрерывность и частные производные
  3. Полное приращение и дифференциал
  4. Достаточное условие дифференцируемости
  5. Производная по направлению и градиент
  6. Экстремум функции двух переменных
  7. Необходимое условие экстремума двух переменных
  8. Достаточное условие экстремума
  9. Наибольшее и наименьшее значения функции

Пример оформления заказа5.6.

Требуется найти наибольшее и наименьшее значения функции

Помощь по математике онлайн

в замкнутой ограниченной области Помощь по математике онлайн, заданной системой неравенств:

Помощь по математике онлайн

Все полученные линии и характерные точки изобразить в системе координат Помощь по математике онлайн.

► 1. Для решения поставленной задачи изобразим заданную область Помощь по математике онлайн в системе координат Помощь по математике онлайн.

Первому неравенству Помощь по математике онлайн соответствует полуплоскость, лежащая справа от оси Помощь по математике онлайн. Второе неравенство Помощь по математике онлайн отсекает от этой полуплоскости часть, лежащую ниже параболы Помощь по математике онлайн, а третье неравенство Помощь по математике онлайн отсекает часть, лежащую выше горизонтальной линии Помощь по математике онлайн. В результате получим область G, изображенную на рис. 5.5.

Точки, соответствующие пересечению линий, которые ограничивают область Помощь по математике онлайн, обозначим буквами

Помощь по математике онлайн
Помощь по математике онлайн
  • Для исследования функции Помощь по математике онлайн на экстремум вначале найдем ее частные производные первого порядка Помощь по математике онлайн и Помощь по математике онлайн и, используя необходимое условие экстремума, найдем координаты критических точек:
Помощь по математике онлайн

Решив систему уравнений:

Помощь по математике онлайн

найдем две точки Помощь по математике онлайн и Помощь по математике онлайн, удовлетворяющие необходимому условию экстремума.

Первая из них принадлежит границе области (см. рис. 5.5). Следовательно, единственной внутренней точкой, в которой функция 2 может иметь экстремум, является точка Помощь по математике онлайн.

Отыскав частные производные второго порядка

Помощь по математике онлайн
Помощь по математике онлайн

найдем значение выражения Помощь по математике онлайн в точке Помощь по математике онлайн:

Помощь по математике онлайн

Так как Помощь по математике онлайн и Помощь по математике онлайн, то функция Помощь по математике онлайн в точке Помощь по математике онлайн имеет минимум:

Помощь по математике онлайн
  • Точки, в которых функция Помощь по математике онлайн принимает наибольшее и наименьшее значения могут находиться как внутри области, так и на ее границе.

Если функция принимает наибольшее (или наименьшее) значение во внутренней точке области, то она имеет в этой точке экстремум. Единственной точкой экстремума, лежащей внутри исследуемой области является точка Помощь по математике онлайн.

Исследуем функцию на границе, которая состоит из отрезков Помощь по математике онлайн и дуги параболы Помощь по математике онлайн.

Линия Помощь по математике онлайн. На отрезке Помощь по математике онлайн выполняется равенство Помощь по математике онлайн, поэтому на этом отрезке функция Помощь по математике онлайн. При Помощь по математике онлайн это возрастающая функция одной переменной Помощь по математике онлайн. Наибольшее и наименьшее значения она принимает на концах отрезка Помощь по математике онлайн.

Линия Помощь по математике онлайн. На отрезке Помощь по математике онлайн выполняется равенство Помощь по математике онлайн, следовательно, на этом отрезке функция

Помощь по математике онлайн

представляет собой функцию одной переменной Помощь по математике онлайн. Наибольшее и наименьшее значения этой функции находятся среди ее значений в критических точках и на концах отрезка Помощь по математике онлайн.

Исследуем полученную функцию на экстремум. Для этого найдем производную функции Помощь по математике онлайн и приравняем ее к нулю:

Помощь по математике онлайн

Решив уравнение Помощь по математике онлайн, находим координаты критических точек Помощь по математике онлайн. Заданном}’ условию Помощь по математике онлайн удовлетворяет лишь одно значение Помощь по математике онлайн. На отрезке Помощь по математике онлайн ему соответствует точка Помощь по математике онлайн.

Итак, наибольшее и наименьшее значения функции Помощь по математике онлайн на отрезке Помощь по математике онлайн находятся среди ее значений в точках Помощь по математике онлайн и Помощь по математике онлайн (см. рис. 5.5).

Линия Помощь по математике онлайн. На линии Помощь по математике онлайн выполняется равенство

Помощь по математике онлайн

в результате исследуемая функция имеет вид

Помощь по математике онлайн

Исследуем полученную функцию на экстремум. Для этого найдем производную функции Помощь по математике онлайн и приравняем ее к нулю:

Помощь по математике онлайн

Решив уравнение Помощь по математике онлайн = 0, находим координаты критических точек

Помощь по математике онлайн

Координаты обеих найденных точек удовлетворяют заданному неравенству Помощь по математике онлайн. На дуге Помощь по математике онлайн этим значениям соответствуют точки

Помощь по математике онлайн

Таким образом, наибольшее и наименьшее значения функции Помощь по математике онлайн на дуге Помощь по математике онлайн находятся среди ее значений в точках Помощь по математике онлайн и Помощь по математике онлайн.

На основании выше изложенного можно сделать вывод о том, что наибольшее и наименьшее значения функции

Помощь по математике онлайн

в замкнутой ограниченной области Помощь по математике онлайн, заданной системой неравенств

Помощь по математике онлайн

находятся среди ее значений в точках Помощь по математике онлайнПомощь по математике онлайн и Помощь по математике онлайн.

Координаты указанных точек Помощь по математике онлайн и значения функции Помощь по математике онлайн в них приведены в таблице:

Помощь по математике онлайн

Наибольшее и наименьшее значения функции Помощь по математике онлайн в замкнутой ограниченной области Помощь по математике онлайн соответственно равны Помощь по математике онлайн = 12 (точка А) и Помощь по математике онлайн = — 1

(точка Помощь по математике онлайн). Все полученные линии и характерные точки в системе координат Помощь по математике онлайн показаны на рис. 5.5.

Интегральное исчисление функций одной переменной

  1. Первообразная и интеграл
  2. Основные методы интегрирования
  3. Интегрирование некоторых классов функций
  4. Интегрирование рациональных дробей
  5. Интегрирование иррациональных функций

Пример оформления заказа6.1.

Требуется найти неопределенные интегралы от указанных тригонометрических функций:

Помощь по математике онлайн

► Для вычисления этого интеграла воспользуемся универсальной тригонометрической подстановкой Помощь по математике онлайн:

Помощь по математике онлайн

Используя замену переменной Помощь по математике онлайн проинтегрируем полученную функцию, а затем, возвращаясь к первоначальным переменным Помощь по математике онлайн окончательно запишем:

Помощь по математике онлайн

Заметим, что подынтегральная функция

Помощь по математике онлайн

является нечетной:

Помощь по математике онлайн

Поэтому воспользуемся заменой Помощь по математике онлайн и, учитывая, что Помощь по математике онлайнПомощь по математике онлайн, получим:

Помощь по математике онлайн
Помощь по математике онлайн

► Так как подынтегральная функция имеет вид Помощь по математике онлайн и показатель степени Помощь по математике онлайн — нечетный, то для ее интегрирования выполним подстановку Помощь по математике онлайн. С учетом того, что Помощь по математике онлайн получим:

Помощь по математике онлайн
Помощь по математике онлайн

Так как подынтегральная функция имеет вид Помощь по математике онлайн, то для ее интегрирования воспользуемся заменой Помощь по математике онлайн:

Помощь по математике онлайн

Полученная подынтегральная функция является неправильной рациональной дробью, следовательно, произведя деление многочленов, получим легко интегрируемую сумму многочлена и правильной рациональной дроби:

Помощь по математике онлайн

► Для нахождения этого интеграла воспользуемся формулой, преобразующей произведение двух тригонометрических функций в их сумму, которая интегрируется с помощью простейшей замены переменных:

Помощь по математике онлайн

Завершая обзор методов интегрирования, заметим, что хотя для всякой непрерывной функции существует первообразная, но не для всякой элементарной функции эта первообразная сама является элементарной функцией. Например, первообразная для функции Помощь по математике онлайн не может быть выражена в элементарных функциях. Неопределенные интегралы от подобных функций принято называть «неберущимися».

Понятие определенного интеграла

Пример оформления заказа6.4.

Вычислить определенный интеграл методом интегрирования по частям

Помощь по математике онлайн

► В соответствии с формулой интегрирования по частям принимаем:

Помощь по математике онлайн

Дифференцируя функцию Помощь по математике онлайн и интегрируя дифференциал функции Помощь по математике онлайн получим:

Помощь по математике онлайн

При нахождении последнего интеграла воспользуемся методом замены переменной. Пусть

Помощь по математике онлайн

тогда

Помощь по математике онлайн

и искомый интеграл может быть приведен к табличному виду:

Помощь по математике онлайн

Таким образом,

Помощь по математике онлайн

Понятие о несобственных интегралах

  1. Понятие о несобственных интегралах
  2. Вычисление площади плоской фигуры

Обыкновенные дифференциальные уравнения

  1. Обыкновенные дифференциальные уравнения
  2. Дифференциальные уравнения с разделяющимися переменными
  3. Линейные дифференциальные уравнения первого порядка
  4. Линейные дифференциальные уравнения второго порядка с постоянными коэффициентами
  5. Линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами
  6. Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентами

Пример оформления заказа7.2.

В демографии известно, что число новорожденных и число умерших за единицу времени пропорциональны численности населения с коэффициентами пропорциональности Помощь по математике онлайн и Помощь по математике онлайн соответственно, значения которых специфичны для каждого региона. Описать протекание демографического процесса (т. е. установить закон изменения численности населения с течением времени).

► Обозначим число жителей в момент Помощь по математике онлайн через Помощь по математике онлайн. Прирост населения Помощь по математике онлайн за время Помощь по математике онлайн равен разности между числом родившихся Помощь по математике онлайн и числом умерших Помощь по математике онлайн за это время, т. е.

Помощь по математике онлайн

Поделим обе части равенства на Помощь по математике онлайн:

Помощь по математике онлайн

Переходя к пределу при Помощь по математике онлайн приходим к уравнению:

Помощь по математике онлайн

решая которое (см. пример 7.1), получаем математическую модель демографического процесса

Помощь по математике онлайн

где Помощь по математике онлайн — постоянная, определяемая начальными условиями. В данном случае численностью населения в начальный момент времени.

Пример оформления заказа7.7.

Найти общее решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами

Помощь по математике онлайн

► Составим характеристическое уравнение:

Помощь по математике онлайн

Дискриминант уравнения больше нуля: Помощь по математике онлайн0. В таком случае: Помощь по математике онлайн1.

Следовательно, общее решение однородного дифференциального уравнения, соответствующего исходному, имеет вид

Помощь по математике онлайн

Правая часть неоднородного дифференциального уравнения: Помощь по математике онлайнПомощь по математике онлайн. Имеем II случай. Число

Помощь по математике онлайн

следовательно Помощь по математике онлайн = 0. Запишем частное решение в виде

Помощь по математике онлайн

Для определения неизвестных коэффициентов Помощь по математике онлайн дважды продифференцируем полученную форму частного решения:

Помощь по математике онлайн

Подставим выражения для Помощь по математике онлайн в исходное дифференциальное уравнение. После группировки по одноименным тригонометрическим функциям аргумента Помощь по математике онлайн получим следующее уравнение:

Помощь по математике онлайн

Приравняв коэффициенты при одноименных тригонометрических функциях, перейдем к эквивалентной системе уравнений:

Помощь по математике онлайн

Находим значения неизвестных коэффициентов, решая последнюю систему:

Помощь по математике онлайн

Подстановляя значения коэффициентов, получим

Помощь по математике онлайн

Тогда, искомое общее решение можно записать в виде

Помощь по математике онлайн

3 случай. Пусть правая часть линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами является суммой нескольких функций.

Тогда частное решение Помощь по математике онлайн такого уравнения будет равно сумме частных решений:

Помощь по математике онлайн

где каждое из частных решений Помощь по математике онлайн соответствует дифференциальному уравнению:

Помощь по математике онлайн

при

Помощь по математике онлайн

Числовые ряды. Степенные ряды

Функциональные и степенные ряды

Ряды Тейлора и Маклорена

Приложения степенных рядов

  1. Вычисление определенных интегралов при помощи степенных рядов
  2. Решение дифференциальных уравнений при помощи степенных рядов

Возможно эти страницы вам будут полезны: