Классификация точек разрыва функции
а) Устранимый, разрыв.
Если функция
определена в некотором интервале, содержащем точку
, кроме, возможно, самой этой точки и существует конечный предел
(неравный
). если функция определена в точке
), то по определению
— точка устранимого разрыва данной функции.
Из определения непрерывности следует, что, если в этом случае доопределить или переопределить в точке
функцию ее предельным значением, то она становится непрерывной в этой точке.
В качестве примера рассмотрим функцию
. Она неопределена в нуле, но, как известно (§1, путает 3)

следовательно, данная функция имеет устранимый разрыв в точке
.

b) Разрыв первого рода.
Пусть функция
определена в некотором интервале, содержащем точку
, кроме, возможно, самой этой точки и существуют конечные односторонние, неравные друг другу пределы
. Тогда будем говорить, ото :гр, — точка разрыва первого рода.
Разность
называется скачком функции
в точке
.
Примером разрыва первого рода может служить точка
для функции

Действительно, здесь

Скачок функции в точке разрыва равен
.

c) Разрыв второго рода.
Предположим, что функция
определена в некотором интервале, содержащем точку
, кроме, может быть, самой этой точки и по крайней мере один из односторонних пределов в точке
не существует или равен бесконечности. В этом случае по определению х<) — точка разрыва второго рода.
Рассмотрим два примера такого сложного разрыва.
1) Для функции
предел
не существует. Действительно, на бесконечно малой последовательности
мы имеем:

Аналогично вдоль другой бесконечно малой последовательности 

Отсюда, ввиду единственности предела функции (§4. пункт 2, свойство 3)) и следует, что предел
не существует и. таким образом,
— точка разрыва второго рода данной функции.

2) Исследуем на непрерывность функцию
в точке
. Дня этого вычисли в этой точке односторонние пределы:

Следовательно, в точке
функция испытывает разрыв второго рода.

Эта лекция взята со страницы онлайн помощи по математическому анализу:
Математический анализ онлайн помощь
Возможно эти страницы вам будут полезны:

