Для связи в whatsapp +905441085890

Интегральное исчисление функций одной переменной с примерами решения и образцами выполнения

Оглавление:

Первообразная функции: В предыдущем семестре мы изучали дифференциальное исчисление, основная задача которого заключается в нахождении производных.

В это семестре мы будем решать, в основном, другую задачу. Если
функцию обозначить Интегральное исчисление функций одной переменной а ее производную Интегральное исчисление функций одной переменнойто эта задача может быть сформулирована так: для данной функции Интегральное исчисление функций одной переменнойнайти такую Интегральное исчисление функций одной переменнойпроизводная которой равнялась бы данной функции Интегральное исчисление функций одной переменной т.е

Интегральное исчисление функций одной переменной

Допустима и следующая формулировка этой задачи: для данной
функции Интегральное исчисление функций одной переменной найти такую функцию Интегральное исчисление функций одной переменной дифференциал которой равнялся бы дифференциалу исходной функции, т.е.

Интегральное исчисление функций одной переменной

Определение:

Функция Интегральное исчисление функций одной переменной производная которой равна Интегральное исчисление функций одной переменнойназывается первообразной функции

Так, например, первообразной функции Интегральное исчисление функций одной переменнойявляется функция Интегральное исчисление функций одной переменной так как

Интегральное исчисление функций одной переменной

функции ее первообразной составляет основную задачу интегрального исчисления. При этом возникает вопрос: для
всякой ли функции существует первообразная? Отвечает на него следующая теорема, принимаемая без доказательства.

Теорема:

Любая непрерывная на отрезке функция имеет на
этом отрезке первообразную.

Поэтому в дальнейшем (если это специально не оговорено) функции,
для которых ищутся первообразные мы будем рассматривать на тех
промежутках, где они непрерывны.
Теперь возникает следующий естественный вопрос: если
первообразная существует, то одна или несколько? На этот вопрос отвечает следующая теорема.

Теорема:

Если функция Интегральное исчисление функций одной переменной на отрезке Интегральное исчисление функций одной переменной имеет первообразную Интегральное исчисление функций одной переменнойто на этом отрезке она имеет бесчисленное множество первообразных вида Интегральное исчисление функций одной переменнойгде Интегральное исчисление функций одной переменной произвольная константа.

Доказательство:

Очевидно, что если Интегральное исчисление функций одной переменной — первообразная для Интегральное исчисление функций одной переменной то Интегральное исчисление функций одной переменной — тоже Интегральное исчисление функций одной переменнойДопустим, что на отрезке Интегральное исчисление функций одной переменной функция Интегральное исчисление функций одной переменнойимеет различные первообразные Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной Тогда из равенства (39.1) следует:

Интегральное исчисление функций одной переменной

Вычитая из одного равенства другое и учитывая, что разность
производных двух функций равна производной разности этих функций, получим:

Интегральное исчисление функций одной переменной

С помощью теоремы Лагранжа легко можно доказать, что если на
некотором отрезке производная функции равна нулю, то она на этом отрезке постоянна. Поэтому из формулы (39.3) следует, что

Интегральное исчисление функций одной переменной

В формуле (39.4) Интегральное исчисление функций одной переменной— произвольное число. Ясно, что выражениеИнтегральное исчисление функций одной переменнойохватывает совокупность всех первообразных данной функции. Следовательно, все первообразные функции Интегральное исчисление функций одной переменной имеют вид Интегральное исчисление функций одной переменнойа все первообразные функции Интегральное исчисление функций одной переменной имеют вид Интегральное исчисление функций одной переменной

Неопределенный интеграл

Введем теперь одно важное
понятие.

Определение:

Если функция Интегральное исчисление функций одной переменной одна из первообразных функции Интегральное исчисление функций одной переменнойто выражение Интегральное исчисление функций одной переменной где Интегральное исчисление функций одной переменнойпостоянная, называется неопределенным интегралом, иными словами неопределенным интегралом называется однопараметрическое семейство первообразных данной функции.

Неопределенный интеграл обозначается Интегральное исчисление функций одной переменнойТаким образом:

Интегральное исчисление функций одной переменной

Здесь:

Интегральное исчисление функций одной переменной

Рассмотренные ранее примеры, мы можем записать так:

Интегральное исчисление функций одной переменной

Действие отыскания неопределенного интеграла (или что то же
самое, бесчисленного множества первообразных) называется
интегрированием. Заметим, что вместо слов «найти интеграл» иногда используется выражение «взять интеграл».

Необходимо отметить, что из факта существования первообразной не
следует, что у элементарной функции Интегральное исчисление функций одной переменнойпервообразная Интегральное исчисление функций одной переменнойпервообразная Интегральное исчисление функций одной переменнойтакже является элементарной функцией.
Существующая в силу теоремы 39.1 первообразная не всегда может
быть выражена с помощью конечного числа алгебраических действий и суперпозиций, проведенных над элементарными функциями. К таким интегралам относятся, например,

Интегральное исчисление функций одной переменной

Интегралы такого типа называются на математическом жаргоне «не-
берущимися», а соответствующие первообразные находятся приближенно с помощью различных приемов.
Для сравнения вспомним, что у элементарной функции производная
( в отличие от первообразной ) всегда является элементарной функцией.

Свойства неопределенного интеграла

  • Постоянный множитель можно вынести за знак интеграла:
Интегральное исчисление функций одной переменной
  • Неопределенный интеграл от алгебраической суммы двух функций
    равен сумме неопределенных интегралов от этих функций:
Интегральное исчисление функций одной переменной

Справедливость формул (39.6) и (39.7) может быть доказана их
дифференцированием. Свойство 2 легко обобщается на случай любого (большего двух) конечного числа слагаемых.

  • Производная неопределенного интеграла равна подынтегральной функции:
Интегральное исчисление функций одной переменной

Справедливость последних двух свойств вытекает из определения
неопределенного интеграла.

  • Неопределенный интеграл от дифференциала некоторой функции равен этой функции плюс Интегральное исчисление функций одной переменной:
Интегральное исчисление функций одной переменной

Это свойство доказывается подстановкой в левую часть (39.5) Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной(см. формулу (39.2)).

Замечание:

Обратите внимание на формулы (39.9) и (39.10): знаки Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойследуя друг за другом как бы уничтожают друг друга.
Но ведь дифференцирование и интегрирование — два взаимно обратных действия.

Замечание:

Из формулы (39.10) следует, что если, например,

Интегральное исчисление функций одной переменной

Это вытекает из известного свойства инвариантности формы первого
дифференциала функции:
Формула

Интегральное исчисление функций одной переменной

сохраняет вид как для случая, когда Интегральное исчисление функций одной переменной является независимой
переменной, так и для случая, когда Интегральное исчисление функций одной переменной зависит еще от какой-то другой переменной.

При нахождении второго и третьего интегралов мы воспользовались
тем, что

Интегральное исчисление функций одной переменной

Такое преобразование подынтегрального выражения называется
подведением (внесением) функций под знак дифференциала. Это
преобразование — самый универсальный прием практического интегрирования. Можно даже утверждать (с небольшой долей преувеличения), что интеграл не найти, если ничего нельзя внести под знак дифференциала.

Таблица основных интегралов

Как и всякая обратная
задача, отыскание первообразной (неопределенного интеграла) сложнее, чем производной (дифференциала).
Если для отыскания производной существует четкий алгоритм, то для отыскания первообразных элементарных функций такого алгоритма не существует. Так, например, не существует правил нахождения интеграла от произведения двух функций, даже если известны интегралы от сомножителей.
Методы интегрирования функций сводятся к указанию ряда приемов, выполнение которых приводит к цели в некоторых частных случаях.
Для облегчения интегрирования составляется таблица так
называемых основных интегралов. Она получается из основных формул дифференцирования и включает в себя наиболее часто встречающиеся интегралы.
Процесс интегрирования (нахождения интеграла или первообразной) сводится к выполнению тождественных преобразований до тех пор, пока нельзя будет применить одну или несколько формул из таблицы интегралов.
Какой интеграл считать табличным — дело вкуса. Первые 11 формул
включаются в такие таблицы всегда.
Вот наша таблица:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Доказательство этих формул сводится к проверке того, что
дифференциал правой части равен подынтегральному выражению в левой части.
Докажем, например, две из них.
Формула №2:

Интегральное исчисление функций одной переменной

Формула №7:

Интегральное исчисление функций одной переменной

В справедливости некоторых других формул мы убедимся в
дальнейшем.
А теперь еще несколько примеров.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Замечание:

Все формулы интегрирования сохраняют виду если
в обе части формулы вместо
Интегральное исчисление функций одной переменной подставить любую дифференцируемую функцию Интегральное исчисление функций одной переменной.

Решение задание на тему: Первообразная и неопределенный интеграл

Вспомните определение 39.1 первообразной. Исходя из него с помощью обращения формул дифференцирования найдем первообразные функций и проверим результат дифференцированием.

Пример:

Интегральное исчисление функций одной переменной

Решение: Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение: Интегральное исчисление функций одной переменной

Проверка:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Проверка:

Интегральное исчисление функций одной переменной

Вспомним теперь определение 39.2 неопределенного интеграла,
таблицу основных интегралов.
При нахождении неопределенных интегралов на этом занятии мы
будем пользоваться только одним, но универсальным приемом — внесением функций под знак дифференциала.
Ради краткости слово «неопределенный» часто будем опускать.
Найти интегралы с использованием формулы №1 таблицы интегралов:

Пример:

Интегральное исчисление функций одной переменной

Решение:
Учитывая, что Интегральное исчисление функций одной переменной найдем

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Учитывая, что Интегральное исчисление функций одной переменной найдем

Интегральное исчисление функций одной переменной

Найти интегралы с использованием формулы №2 таблицы интегралов:

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Найти интегралы с использованием формул №3 и №4 таблицы
интегралов:

Пример:

Интегральное исчисление функций одной переменной

Решение:

Число 5 нельзя вынести за знак синуса, но зато число 5
можно внести под знак дифференциала, умножив одновременно интеграл на Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Так как Интегральное исчисление функций одной переменной то:

Интегральное исчисление функций одной переменной

Найдите следующие интегралы с использованием других формул
таблицы интегралов с помощью, приема неоднократно использованного выше -внесение функций под знак дифференциала

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Основные методы интегрирования

Основные методы интегрирования — замена переменной, методом
разложения, по частям. Интегрирование выражений, содержащих
квадратный трехчлен.

Рассмотрим теперь некоторые приемы, позволяющие сводить
заданные интегралы к табличным.

Интегрирование методом замены переменной

Имеет
место формула

Интегральное исчисление функций одной переменной

в справедливости которой можно убедиться, найдя дифференциалы обеих ее частей:

Интегральное исчисление функций одной переменной

Допустим, что интеграл в правой части формулы (40.1) найден. Тогда
разрешим выражение Интегральное исчисление функций одной переменной относительно Интегральное исчисление функций одной переменной и подставим его в Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Замечание 40.7. Для запоминания формулы (40.1) заметим, что правая ее часть получается, если в интеграле Интегральное исчисление функций одной переменной заменить Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

При нахождении такого типа интегралов надо обращать
внимание на функции Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной . Степень аргумента Интегральное исчисление функций одной переменнойво второй на единицу меньше, как и у производной степенной функции. Поэтому, если воспользоваться подстановкой Интегральное исчисление функций одной переменной то после дифференцирования последнего равенства получим Интегральное исчисление функций одной переменнойСледовательно, множитель Интегральное исчисление функций одной переменной «войдет» в Интегральное исчисление функций одной переменной

Оформим нахождение интеграла с помощью подстановки следующим образом:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Обозначим Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Применим подстановку

Интегральное исчисление функций одной переменной

Поэтому:

Интегральное исчисление функций одной переменной

Если заменить Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной получим формулу №7 из нашей таблицы интегралов.

Интегрирование методом разложения

Этот метод
основан на разложении подынтегральной функции на сумму нескольких функций и применении свойств 1 и 2 неопределенного интеграла.

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Ясно, что сумма трех произвольных постоянных Интегральное исчисление функций одной переменной произвольная постоянная, которую можно обозначить просто Интегральное исчисление функций одной переменнойПоэтому при нахождении интеграла от суммы нескольких слагаемых следует писать только одно произвольное слагаемое.

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Этот интеграл можно найти еще и так:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл:

Интегральное исчисление функций одной переменной

В исходном интеграле степень Интегральное исчисление функций одной переменной в последнем Интегральное исчисление функций одной переменнойПрименяем тот же прием.

Интегральное исчисление функций одной переменной

Интегралы, в которых подынтегральная функция есть произведение
синусов и косинусов разных аргументов также могут быть разложены на слагаемые с помощью тригонометрических формул:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Можно показать, что

Интегральное исчисление функций одной переменной

Для доказательства достаточно в правой части привести к общему
знаменателю. Поэтому:

Интегральное исчисление функций одной переменной

Это — табличный интеграл №11.

Интегрирование по частям

Очевидно: Интегральное исчисление функций одной переменнойпроинтегрировав обе части этого равенства, получим:

Интегральное исчисление функций одной переменной

Формула (40.3) называется формулой интегрирования по частям. Она
применяется, когда:
I) подынтегральная функция есть произведение степенной на
показательную или тригонометрическую функции

Интегральное исчисление функций одной переменной

В этих случаях подынтегральное выражение разбивается на
множители и преобразуется так:

Интегральное исчисление функций одной переменной

II) подынтегральная функция есть произведение степенной на
логарифмическую или обратную тригонометрическую функции

Интегральное исчисление функций одной переменной

В этих случаях подынтегральное выражение разбивается на
множители и преобразуется так:

Интегральное исчисление функций одной переменной

III) в некоторых других случаях;
Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Формулу интегрирования по частям применим дважды.
Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

И, наконец, рассмотрим примеры на вышеупомянутый пункт 3. В
следующих двух упражнениях применение формулы интегрирования по частям дважды приводит к уравнению относительно искомого интеграла, из которого последний и находится.

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Получили уравнение, содержащее искомый интеграл Интегральное исчисление функций одной переменной Решая это
уравнение, находим:

Интегральное исчисление функций одной переменной

Величина Интегральное исчисление функций одной переменной прибавляется потому, что равенство содержит интегралы с точностью до произвольной константы.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Итак, мы получили равенство:

Интегральное исчисление функций одной переменной

откуда

Интегральное исчисление функций одной переменной

Нахождение интегралов, содержащих квадратный трехчлен

При нахождении интегралов, содержащих квадратный трехчлен Интегральное исчисление функций одной переменнойчасто полезна подстановка:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Сделаем подстановку

Интегральное исчисление функций одной переменной

Далее получим:

Интегральное исчисление функций одной переменной

Сделав обратную подстановку, получим:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Применение подстановки 40.4 аналогично операции выделения полного квадрата.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

Так как

Интегральное исчисление функций одной переменной

то

Интегральное исчисление функций одной переменной

Решение заданий на тему: Неопределённый интеграл

На предыдущем занятии мы пользовались лишь табличными
формулами интегрирования и методом внесения функций под знак
дифференциала.
Решим несколько примеров с использованием метода разложения,
который заключается в представлении подынтегральной функции в виде суммы нескольких слагаемых и использовании свойств интеграла:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Но этого достаточно только для нахождения простейших интегралов.
Сейчас мы рассмотрим более сложные методы.
Найти интегралы с помощью замены переменной.

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Замечание:

Интегральное исчисление функций одной переменнойпоэтому знак абсолютной величины опущен.

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Этот интеграл можно найти и с помощью подведения функции Интегральное исчисление функций одной переменной под знак дифференциала:

Интегральное исчисление функций одной переменной

Найти интегралы с помощью подведения функций под знак
дифференциала.

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Найти интегралы с помощью интегрирования по частям.

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Если же показатель степени Интегральное исчисление функций одной переменнойто интеграл находится так:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Напомним, что в лекции мы нашли таким же способом похожий
интеграл Интегральное исчисление функций одной переменной

А следующий интеграл мы найдем с помощью подстановки 40.4.

Пример:

Интегральное исчисление функций одной переменной

Решение: Примем за новую переменную I половину производной
квадратного трехчлена Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Замечание:

После подстановки Интегральное исчисление функций одной переменной дважды примените интегрирование по частям.

Интегрирование рациональных дробей

Интегрирование простейших элементарных дробей. Примеры
интегрирования рациональных функций.

Интегрирование простейших рациональных дробей

В лекции 36 мы ввели понятие так называемых простейших дробей
следующих четырех типов.

Интегральное исчисление функций одной переменной

Рассмотрим как находятся интегралы от этих дробей.
Интегралы от простейших дробей первого и второго типов являются
табличными интегралами, входящими туда под номерами 1 и 2.

Интегральное исчисление функций одной переменной

Интеграл от дроби третьего типа рассмотрен нами в п. 40.4 Повторим
его вычисление в общем виде.

Интегральное исчисление функций одной переменной

Если ввести обозначение:

Интегральное исчисление функций одной переменной

то

Интегральное исчисление функций одной переменной

Заменяя Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойих выражениями, получим:

Интегральное исчисление функций одной переменной

Для вычисления интеграла от дроби третьего типа можно поступить так

а) В числителе дроби, стоящей под интегралом, записываем
производную знаменателя, т.е. Интегральное исчисление функций одной переменной Тождественными преобразованиями из Интегральное исчисление функций одной переменной получаем заданный числитель Интегральное исчисление функций одной переменной Для этого Интегральное исчисление функций одной переменной умножаем на Интегральное исчисление функций одной переменнойи к полученному произведению прибавляем Интегральное исчисление функций одной переменнойОчевидно, что

Интегральное исчисление функций одной переменной

б) Преобразованная дробь

Интегральное исчисление функций одной переменной

принимает вид

Интегральное исчисление функций одной переменной

и представляется как сумма двух дробей:

Интегральное исчисление функций одной переменной

Числитель первой дроби равен производной знаменателя, поэтому
интеграл от нее равен натуральному логарифму модуля знаменателя.
Для интегрирования второй дроби в знаменателе выделяем полный
квадрат:

Интегральное исчисление функций одной переменной

Интеграл от второй дроби приводится к табличному №11, если Интегральное исчисление функций одной переменной и к табличному №8, если Интегральное исчисление функций одной переменной

Замечание:

Если в знаменателе дроби вместо трехчлена Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменнойнаходится трехчлен Интегральное исчисление функций одной переменнойто для сведения этого случая к предыдущему необходимо коэффициент а вынести за скобку.

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Половину производной квадратного трехчлена обозначим Интегральное исчисление функций одной переменной, т.е. Интегральное исчисление функций одной переменной тогда Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной Следовательно,

Интегральное исчисление функций одной переменной

Этот же интеграл найдем рассмотренным на с 55 способом.

Производная знаменателя равна Интегральное исчисление функций одной переменнойУмножим и делим дробь Константу в числителе, равную 2 записываем, как 4-2:

Интегральное исчисление функций одной переменной

Почленным деления числителя на знаменатель разбиваем дробь на две дроби и в знаменателе второй дроби выделяем полный квадрат:

Интегральное исчисление функций одной переменной

Тогда интеграл равен:

Интегральное исчисление функций одной переменной

IV. Применив к интегралу от простейшей дроби IV типа ту же
подстановку, что и к интегралу от дроби Ш типа, получим:

Интегральное исчисление функций одной переменной

Первый интеграл в (41.1) легко вычисляется:

Интегральное исчисление функций одной переменной

Для вычисления второго интеграла. Интегральное исчисление функций одной переменнойзапишем его в виде:

Интегральное исчисление функций одной переменной

Замечая, что Интегральное исчисление функций одной переменнойполучим:

Интегральное исчисление функций одной переменной

К интегралу Интегральное исчисление функций одной переменнойприменим интегрирование по частям, полагая:

Интегральное исчисление функций одной переменной

Подставляя данный интеграл в формулу (41.2), после приведения
подобных членов, получим:

Интегральное исчисление функций одной переменной

Это — рекуррентная формула или — формула приведения. Она
позволяет свести интеграл от дроби IV типа с показателем степени Интегральное исчисление функций одной переменнойк интегралу от дроби IV типа с показателем степени Интегральное исчисление функций одной переменной

Формулу (41.3) надо применять Интегральное исчисление функций одной переменной раз, пока показатель степени в знаменателе не станет равным единице.

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Здесь Интегральное исчисление функций одной переменнойПрименяя формулу (41.3), получим:

Интегральное исчисление функций одной переменной

По той же формуле:

Интегральное исчисление функций одной переменной

Так как

Интегральное исчисление функций одной переменной

то

Интегральное исчисление функций одной переменной

и

Интегральное исчисление функций одной переменной

Рассмотрим теперь Интегральное исчисление функций одной переменной где Интегральное исчисление функций одной переменнойрациональная дробь. Как
мы видели в лекции 36 любая дробь может быть представлена в виде целой части (многочлена) и суммы простейших дробей. А следовательно всегда может быть сведен к интегралам от многочлена и суммы простейших дробей.

Пример:

Haйmu интеграл

Интегральное исчисление функций одной переменной

Решение:

Дробь под интегралом правильная. Представим ее в
виде:

Интегральное исчисление функций одной переменной

Приведем в правой части к общему знаменателю и приравняем числители:

Интегральное исчисление функций одной переменной

Коэффициенты Интегральное исчисление функций одной переменной найдем пользуясь и методом
произвольных значений, и методом неопределенных коэффициентов:

Интегральное исчисление функций одной переменной

При нахождении последних трех уравнений, мы использовали
найденные ранее значения Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Для определения Интегральное исчисление функций одной переменной имеем систему уравнений

Интегральное исчисление функций одной переменной

решая которую, найдем:

Интегральное исчисление функций одной переменной

Таким образом,

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл

Интегральное исчисление функций одной переменной

Решение:

Неправильную дробь, стоящую под интегралом
представим в виде суммы целой части и правильной дроби:

Интегральное исчисление функций одной переменной

Далее разложим знаменатель Интегральное исчисление функций одной переменной на множители. Этот множитель имеет очевидный корень Интегральное исчисление функций одной переменнойПоэтому он делится на двучлен Интегральное исчисление функций одной переменной без остатка. Выполнив это деление, найдем:

Интегральное исчисление функций одной переменной

Квадратный трехчлен Интегральное исчисление функций одной переменной имеет действительные корни и также может быть разложен на множители. Но не будем это делать, так как корни иррациональные.
Представим правильную дробь в виде суммы дробей:

Интегральное исчисление функций одной переменной

Приведем в правой части к общему знаменателю и приравняем
числители:

Интегральное исчисление функций одной переменной

Коэффициенты Интегральное исчисление функций одной переменнойнайдем пользуясь и методом произвольных значений, и методом неопределенных коэффициентов:

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Проведем теперь над второй дробью в правой части тождественные
преобразования:

Интегральное исчисление функций одной переменной

Теперь окончательно получаем:

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

Дробь, стоящая под интегралом, — неправильная.
Разделив числитель на знаменатель, найдем:

Интегральное исчисление функций одной переменной

Разложим знаменатель на множители:

Интегральное исчисление функций одной переменной

Разложим правильную дробь на простейшие:

Интегральное исчисление функций одной переменной

Приведем в правой части к общему знаменателю и приравняем числители:

Интегральное исчисление функций одной переменной

Коэффициенты Интегральное исчисление функций одной переменнойнайдем пользуясь и методом произвольных значений, и методом неопределенных коэффициентов:

Интегральное исчисление функций одной переменной

Таким образом,

Интегральное исчисление функций одной переменной

Окончательно получаем:

Интегральное исчисление функций одной переменной

Решение заданий на тему: Интегрирование рациональных дробей

Это практическое занятие вначале мы посвятим интегрированию
элементарных дробей, а затем примерам интегрирования рациональных функций, разложение которых на дроби мы получим на практическом занятии.
Проинтегрировать элементарные дроби.

Пример:

Найти интеграл от дроби 1 типа Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл от дроби 2 типа Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл от дроби 3 типа Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл от дроби 4 типа Интегральное исчисление функций одной переменной

Решение:

Последовательно применяем рекуррентную формулу
(41.3):

Интегральное исчисление функций одной переменной

Но ведь Интегральное исчисление функций одной переменной

Далее увеличиваем индекс:

Интегральное исчисление функций одной переменной

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Под интегралом стоит неправильная рациональная
дробь. Разделив числитель на знаменатель, получим

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Учитывая, что уИнтегральное исчисление функций одной переменной разложим правильную рациональную дробь на простейшие дроби

Интегральное исчисление функций одной переменной

Приведем к общему знаменателю в правой части тождества и
приравняем числители

Интегральное исчисление функций одной переменной

Коэффициенты Интегральное исчисление функций одной переменной найдем пользуясь и методом произвольных значений, и методом неопределенных коэффициентов:

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Это интеграл от правильной дроби.
Раскладываем ее на простейшие:

Интегральное исчисление функций одной переменной

Далее

Интегральное исчисление функций одной переменной

Приравниваем коэффициенты при одинаковых степенях х в обеих
частях равенства:

Интегральное исчисление функций одной переменной

Решив систему, найдем

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Последний интеграл берется с помощью подстановки

Интегральное исчисление функций одной переменной

Тогда

Интегральное исчисление функций одной переменной

Таким образом:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Приведя к общему знаменателю и приравняв числители, получим

Интегральное исчисление функций одной переменной

Приравнивая друг другу соответствующие коэффициенты левой и
правой частей, приходим к системе

Интегральное исчисление функций одной переменной

Ее решение: Интегральное исчисление функций одной переменной

Таким образом:

Интегральное исчисление функций одной переменной

Интегрирование тригонометрических функций

Универсальная тригонометрическая подстановка. Некоторые
частные приемы нахождения интегралов, содержащих
тригонометрические функции.

Рассмотрим некоторые приемы, полезные при нахождении интегралов:

Интегральное исчисление функций одной переменной — рациональная функция.

Например, если Интегральное исчисление функций одной переменной — рациональная функция относительно Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной тоИнтегральное исчисление функций одной переменной — рациональная функция относительно Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной а Интегральное исчисление функций одной переменной — рациональная функция относительно Интегральное исчисление функций одной переменной

Универсальная тригонометрическая подстановка

Из
тригонометрии известно, что все тригонометрические функции аргументаИнтегральное исчисление функций одной переменной рационально выражаются через тангенс половинного аргумента:

Интегральное исчисление функций одной переменной

Поэтому с помощью формул:

Интегральное исчисление функций одной переменной

интеграл (42.1) сводится к интегралу

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — рациональная функция Интегральное исчисление функций одной переменнойа, как показано в предыдущей
лекции такой интеграл, в принципе, берется в элементарных функциях.

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

По формулам (42.2):

Интегральное исчисление функций одной переменной

Сделаем еще одну подстановку:

Интегральное исчисление функций одной переменной

Возвращаясь от Интегральное исчисление функций одной переменной к Интегральное исчисление функций одной переменной а затем от Интегральное исчисление функций одной переменной доИнтегральное исчисление функций одной переменнойполучим:

Интегральное исчисление функций одной переменной

Применение универсальной тригонометрической подстановки часто
приводит к сложным выкладкам. Поэтому на практике она
применяется к интегралам, для которых не существует более простых подстановок, например, к интегралам вида

Интегральное исчисление функций одной переменной

При нахождении интегралов, содержащих тригонометрические
функции в другой форме, применяются другие приемы.

Нахождение интегралов вида Интегральное исчисление функций одной переменной

Хотя бы один из показателей степени — целое нечетное
положительное число Интегральное исчисление функций одной переменнойдругой показатель — равен любому числу (даже не целому).

Если Интегральное исчисление функций одной переменнойделается подстановка Интегральное исчисление функций одной переменной то Интегральное исчисление функций одной переменнойЕсли Интегральное исчисление функций одной переменнойи Интегральное исчисление функций одной переменной -нечетные числа, делается любая из указанных подстановок (см. пример 43.8).

Если же при нахождении интегралов пользуются не подстановкой, а
подведением под знак дифференциала, то надо руководствоваться
правилом: та функция, показатель степени которой Интегральное исчисление функций одной переменнойвносится под знак дифференциала.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:
а) с помощью подстановки:

Интегральное исчисление функций одной переменной

б) с помощью подведения функции под знак дифференциала:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Внесем Интегральное исчисление функций одной переменнойпод знак дифференциала:

Интегральное исчисление функций одной переменной

и представим:

Интегральное исчисление функций одной переменной

Тогда:

Интегральное исчисление функций одной переменной

Оба показателя степени — четные положительные числа (один
из них может равняться 0). В этом случае пользуются
тригонометрическими формулами:

Интегральное исчисление функций одной переменной

После их применения интегралы сводятся к случаям 42.2.1 или 42.2.2.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Первый интеграл относится к пункту 42.2.2, второй к пункту 42.2.1.
Поэтому

Интегральное исчисление функций одной переменной

Оба показателя отрицательные числа одинаковой четности.
В этом случае, числитель и знаменатель надо разделить на Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной и ввести дифференциал тангенса (котангенса). Требование того, чтобы Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменнойбыли целыми числами и оба отрицательными не является обязательным.

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Интегральное исчисление функций одной переменной

Решение:

Очевидно, что

Интегральное исчисление функций одной переменной

Поэтому:

Интегральное исчисление функций одной переменной

Укажем еще случаи, позволяющие избежать применения
универсальной тригонометрической подстановки.

Если Интегральное исчисление функций одной переменной меняет знак при замене Интегральное исчисление функций одной переменнойполезна подстановка Интегральное исчисление функций одной переменной

Если Интегральное исчисление функций одной переменной меняет знак при замене Интегральное исчисление функций одной переменной полезна подстановка Интегральное исчисление функций одной переменной

Если Интегральное исчисление функций одной переменной не меняется при одновременной замене Интегральное исчисление функций одной переменнойна Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Так как синус и косинус находятся в четных степенях,
то подынтегральная функция не изменится при изменениях знака у этих функций.
Делаем подстановку:

Интегральное исчисление функций одной переменной

Если

Интегральное исчисление функций одной переменной

Поэтому:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

При замене Интегральное исчисление функций одной переменнойподынтегральная функция меняет знак, поэтому применяем подстановку

Интегральное исчисление функций одной переменной

Интеграл примет вид:

Интегральное исчисление функций одной переменной

Это — интеграл от рациональной дроби. Раскладывая дробь

Интегральное исчисление функций одной переменной

на простейшие, после тождественных преобразований, окончательно получим

Интегральное исчисление функций одной переменной

Нахождение интегралов вида Интегральное исчисление функций одной переменнойМожно рекомендовать два способа:

а) С использованием формулы:

Интегральное исчисление функций одной переменной

и понижением показателя степени Интегральное исчисление функций одной переменной на две единицы ( см. пример 40.7).

б) С помощью подстановки: Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение: Обозначим: Интегральное исчисление функций одной переменнойтогдаИнтегральное исчисление функций одной переменной Поэтому:

Интегральное исчисление функций одной переменной

Аналогично находятся интегралы вида Интегральное исчисление функций одной переменной

Нахождение интегралов вида Интегральное исчисление функций одной переменной В этом случае с помощью подстановки Интегральное исчисление функций одной переменнойполучаем интеграл от рациональной функции аргумента Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Введя новую переменную

Интегральное исчисление функций одной переменной

получаем интеграл от правильной рациональной дроби:

Интегральное исчисление функций одной переменной

Разлагаем дробь на сумму элементарных дробей:

Интегральное исчисление функций одной переменной

Приводим в правой части тождества к общему знаменателю и
приравниваем числители:

Интегральное исчисление функций одной переменной

Подставив в последнее соотношение Интегральное исчисление функций одной переменнойнайдем, Интегральное исчисление функций одной переменнойПриравняв коэффициенты при Интегральное исчисление функций одной переменной а затем свободные члены, найдем Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Сделав обратную подстановку, и учитывая, что

Интегральное исчисление функций одной переменной

получим

Интегральное исчисление функций одной переменной

Решение заданий на тему: Интегрирование тригонометрических функций

На этом занятии мы поупражняемся в нахождении интегралов от
тригонометрических функций. Некоторые интегралы такого типа мы находили ранее, при знакомстве с методом разложения.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Воспользуемся формулой, преобразования произведения
косинусов в сумму:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Рассмотрим три вида интегралов Интегральное исчисление функций одной переменной

а) Хотя бы один из показателей — нечетное положительное число,
другой — любое число.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Воспользуемся заменой переменной: Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменнойТогда

Интегральное исчисление функций одной переменной

б) Оба показателя четные положительные числа (один из них, в
частности, может равняться нулю).

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Так как

Интегральное исчисление функций одной переменной

Опять применив формулу понижения степени: Интегральное исчисление функций одной переменной получим

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

в) Показатели степени — отрицательные числа одинаковой четности Интегральное исчисление функций одной переменной

Требование того, чтобы Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной были целыми числами и оба
отрицательными не является обязательным.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

В этом примере показатель синуса Интегральное исчисление функций одной переменнойа показатель степени косинуса Интегральное исчисление функций одной переменной а потому Интегральное исчисление функций одной переменной

Применим подстановку Интегральное исчисление функций одной переменной тогда

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

В следующих двух примерах применим, рассмотренные в лекции, два приема нахождения интегралов от Интегральное исчисление функций одной переменной-ой степени Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Воспользуемся формулами

Интегральное исчисление функций одной переменной

И, наконец, решим два примера на универсальную
тригонометрическую подстановку.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

При нахождении, например, интеграла Интегральное исчисление функций одной переменнойнадо сначала заменить Интегральное исчисление функций одной переменной а затем применить универсальную подстановку.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Опять применим универсальную подстановку Интегральное исчисление функций одной переменнойтогда

Интегральное исчисление функций одной переменной

Разложим дробь на простейшие

Интегральное исчисление функций одной переменной

Отсюда

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Интегрирование иррациональных функций

Нахождение интегралов от иррациональных выражений.
Рационализация функций с помощью тригонометрических подстановок. Заключительные замечании об интегрировании.

Рассмотрим некоторые частные приемы, позволяющие
иррациональные функции свести к рациональным.

43.1. Интегралы вида Интегральное исчисление функций одной переменной Интегралы вида Интегральное исчисление функций одной переменной где Интегральное исчисление функций одной переменной — рациональное выражение относительно Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной— целое положительное число не меньшее двух, могут быть сведены к интегралам от рациональных функций с помощью замены переменной:

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Интеграл в правой части последнего равенства может быть найден
приемами, изложенными ранее.

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Положим:

Интегральное исчисление функций одной переменной

Поэтому:

Интегральное исчисление функций одной переменной

Интеграл Интегральное исчисление функций одной переменнойможем найти разложением дроби на сумму
элементарных дробей. Однако, проще сделать подстановку

Интегральное исчисление функций одной переменной

Дальнейший ход решения следующий:

Интегральное исчисление функций одной переменной

Интегралы вида Интегральное исчисление функций одной переменнойЭти интегралы
приводятся к интегралам от рациональной функции подстановкой:

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл: Интегральное исчисление функций одной переменной

Решение:

Пусть

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Раскладываем подынтегральную функцию на элементарные дроби:

Интегральное исчисление функций одной переменной

Находим коэффициенты этого разложения, пользуюсь и методом
неопределенных коэффициентов, и методом произвольных значений.

Интегральное исчисление функций одной переменной

Поэтому:

Интегральное исчисление функций одной переменной

Вернувшись к исходной переменной, получим:

Интегральное исчисление функций одной переменной

Если в подынтегральное выражение входят корни из одного и того же
выражения разных степеней, т.е. для интегралов вида

Интегральное исчисление функций одной переменной

применяется подстановка, рационализирующая подынтегральную
функцию:

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной— наименьшее общее кратное показателей корней Интегральное исчисление функций одной переменной

Пример:

Найти интеграл

Интегральное исчисление функций одной переменной

Решение:
Так как выражение Интегральное исчисление функций одной переменной входит в корни 3 и 4 степеней, а наименьшим общим кратным этих чисел является 12, то положим:

Интегральное исчисление функций одной переменной

Тогда интеграл примет вид:

Интегральное исчисление функций одной переменной

Это — интеграл от рациональной дроби. Так как дробь неправильная,
разделим числитель на знаменатель, находим:

Интегральное исчисление функций одной переменной

Сделав обратную подстановку Интегральное исчисление функций одной переменной окончательно получим:

Интегральное исчисление функций одной переменной

Интегралы вида Интегральное исчисление функций одной переменной После подстановки Интегральное исчисление функций одной переменной такие интегралы сводятся к интегралам, содержащим корни вида:

Интегральное исчисление функций одной переменной

Если интеграл не является табличным, то интегралы, содержащие
корни вида (43.4), рационализируются подстановками:

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл: Интегральное исчисление функций одной переменной

Решение:

После подстановки:

Интегральное исчисление функций одной переменной

интеграл запишется в виде:

Интегральное исчисление функций одной переменной

Далее положим

Интегральное исчисление функций одной переменной

Таким образом:

Интегральное исчисление функций одной переменной

Так как

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Отметим, что интегралы с корнями вида (43.4) иногда можно взять
по частям (см. пример 40.15).

Пример:

Вычислить интеграл: Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Интегралы вида Интегральное исчисление функций одной переменной К таким интегралам можно
было бы применить методику М. 41.3, но однако целесообразнее оказывается подстановка

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл: Интегральное исчисление функций одной переменной

Решение:

Применив подстановку (43.5) по лучим:

Интегральное исчисление функций одной переменной

Интегралы от дифференциальных биномов

Так
называются интегралы вида:

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — любые рациональные числа.

Доказано, это только в трех случаях этот интеграл может быть
выражен в конечном виде через алгебраические, логарифмические и показательные функции.

Интегральное исчисление функций одной переменной целое число. В этом случае применяется двухчлен Интегральное исчисление функций одной переменной возводиться в степень Интегральное исчисление функций одной переменной и после умножения на Интегральное исчисление функций одной переменнойпочленно интегрируется.

Интегральное исчисление функций одной переменной — целое число. В этом случае применяется подстановка Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменнойгде Интегральное исчисление функций одной переменной— знаменатель дроби Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной — целое число В этом случае применяется подстановка Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной где Интегральное исчисление функций одной переменной— знаменатель дроби Интегральное исчисление функций одной переменной

Пример:

Найти интеграл

Интегральное исчисление функций одной переменной

Решение:

Перепишем интеграл в виде:

Интегральное исчисление функций одной переменной

Здесь

Интегральное исчисление функций одной переменной — целое число

Делаем подстановку:

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Для возвращения к исходной переменной, воспользовавшись равенством

Интегральное исчисление функций одной переменной

получим

Интегральное исчисление функций одной переменной

Заключительные замечания об интегрировании

Интегрирование — операция не только сложнее, в общем случае, чем
дифференцирование, но в отличие от нее не имеет четкого алгоритма.
Вся трудность интегрального исчисления заключается в
невозможности сразу сказать, выражается ли первообразная через элементарные функции или нет.
Каким бы простым не казался на первый взгляд интеграл, например,

Интегральное исчисление функций одной переменной

выразить его через элементарные функции невозможно.
Для нахождения ряда интегралов существуют различные способы.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Найдем этот интеграл тремя способами, внеся под знак
дифференциала сначала Интегральное исчисление функций одной переменной, затем Интегральное исчисление функций одной переменнойи, наконец число 2.

Интегральное исчисление функций одной переменной

Замечание:

Может показаться, что решение последнего при-
мера противоречит теореме 39.2. Но из тригонометрических формул следует, что функции

Интегральное исчисление функций одной переменной

отличаются друг от друга на постоянные величины.

Мы ознакомились только с небольшим числом приемов
интегрирования функций. Тем не менее, они позволяют интегрировать довольно широкие классы элементарных функций.
Но и к нахождению таких интегралов необходимо подходить
творчески. Так для нахождения, например, интеграла

Интегральное исчисление функций одной переменной

из примера 41.4 потребуется произвести большой объем вычислений.
Интеграл же

Интегральное исчисление функций одной переменной

на первый взгляд такой же трудоемкий берется значительно проще, так как числитель подынтегральной функции равен произвольной
знаменателя. Внеся числитель под знак дифференциала, применяем формулу №2 таблицы интегралов.
В нашей таблице интегралов 15 формул. А в таблицах интегралов,
сумм, рядов и произведений (авторы И.С.Рыжик и И.М.Градштейн,
Наука, 1971) около пяти тысяч интегралов.
На практике достаточно сложные интегралы не вычисляют, а ищут в более или менее подробной таблице интегралов, или в соответствующей программе на компьютере

Решение заданий на тему: Интегрирование иррациональностей

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Замечание:

Если в последнем интеграле поменять местами
числитель и знаменатель, то кроме аналогичного, можно
рекомендовать более простой способ вычисления интеграла. Достаточно почленно разделить числитель на знаменатель:

Интегральное исчисление функций одной переменной

Такой же прием для рационализации подынтегральной функции
применяется, если последняя содержит дробь Интегральное исчисление функций одной переменнойв разных степенях.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Подстановка Интегральное исчисление функций одной переменной приводит к интегрированию
рациональной функции. Из указанной подстановки определим Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Первый интеграл табличный, второй — от дроби 4-ого типа:

Интегральное исчисление функций одной переменной

Взяв этот, а значит и предыдущий, после возвращения к исходной
переменной, получим окончательно

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение: Этот интеграл можно свести к рассматриваемому типу,
например:

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Так как

Интегральное исчисление функций одной переменной

Вернувшись к исходной переменной, окончательно получим

Интегральное исчисление функций одной переменной

В следующих примерах мы не рационализируем подынтегральные функции, а сводим интегралы к табличным.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Интегралы Интегральное исчисление функций одной переменнойсводятся к рассмотренным выше подстановкой Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

В заключение данного занятия найдем интеграл с помощью
тригонометрической подстановки.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Положим Интегральное исчисление функций одной переменнойтогда

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Найдем Интегральное исчисление функций одной переменнойчерез Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Поэтому окончательно

Интегральное исчисление функций одной переменной

Определенный интеграл

Определенный интеграл. Свойства, теорема существования.
Производная по переменной верхней границе. Формула Ньютона-
Лейбница. Замена переменной и интегрирование по частям в
определенном интеграле. Физический и геометрический смысл
определенного интеграла.

Определенный интеграл. Пусть на отрезке Интегральное исчисление функций одной переменной дана непрерывная функция Интегральное исчисление функций одной переменной

Проделаем следующие действия:

  • Отрезок Интегральное исчисление функций одной переменной разделим на Интегральное исчисление функций одной переменной частей произвольным образом. Каждый такой отрезок назовем частичным. Если обозначить точки деления отрезка
Интегральное исчисление функций одной переменной

то длина частичного отрезка

Интегральное исчисление функций одной переменной
  • На каждом частичном отрезке выберем произвольную точку Интегральное исчисление функций одной переменной т.е. Интегральное исчисление функций одной переменной
  • Вычислим значение функции Интегральное исчисление функций одной переменнойв произвольно выбранной точке Интегральное исчисление функций одной переменнойумножим это значение на длину соответствующего частичного отрезка Интегральное исчисление функций одной переменнойи составим сумму всех таких произведений, которую обозначим
Интегральное исчисление функций одной переменной

Эта сумма называется интегральной суммой для функции Интегральное исчисление функций одной переменной на отрезке Интегральное исчисление функций одной переменной. Очевидно для функции Интегральное исчисление функций одной переменной на отрезке Интегральное исчисление функций одной переменнойможно составить бесчисленное множество интегральных сумм.

  • Найдем предел интегральной суммы (44.1) при условии, что число частичных отрезков неограниченно возрастает и каждый из них стягивается в точку.

Обозначим через Интегральное исчисление функций одной переменнойдлину наибольшего из частичных отрезков.

Определение:

Предел интегральной суммы (44.1)

Интегральное исчисление функций одной переменной

при условии, что Интегральное исчисление функций одной переменной(и, следовательно, при Интегральное исчисление функций одной переменной) если он
существует и не зависит ни от. способа деления отрезка Интегральное исчисление функций одной переменнойинтегралом функции Интегральное исчисление функций одной переменной на отрезкеИнтегральное исчисление функций одной переменной и обозначается символом Интегральное исчисление функций одной переменной

Таким образом,

Интегральное исчисление функций одной переменной

Функция Интегральное исчисление функций одной переменной в этом случае называется интегрируемой на отрезке Интегральное исчисление функций одной переменной

Возникает естественный вопрос: при каких условиях существует
предел (44.1). Отвечает на него следующая теорема, которую мы принимаем без доказательства.

Теорема:

Существования определенного интеграла. Если
функция Интегральное исчисление функций одной переменной непрерывна на отрезке Интегральное исчисление функций одной переменной, то существует определенный интеграл Интегральное исчисление функций одной переменнойт.е. существует предел (44.1), не зависящий ни от способа разбиения отрезка, ни от способа выбора внутренних точек.

В символе Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной — нижний и верхний пределы (границы) интегрирования,

Интегральное исчисление функций одной переменной — подынтегральная функция,

Интегральное исчисление функций одной переменной — подынтегральное выражение.

Отрезок Интегральное исчисление функций одной переменной называется отрезком (областью) интегрирования.

Отметим, что каждое слагаемое Интегральное исчисление функций одной переменнойесть величина бесконечно малая. Так как их число неограниченно возрастает можем сказать, что определенный интеграл есть предел бесконечно большого числа бесконечно малых слагаемых.

Свойства определенного интеграла

Рассмотрим исходя из
определения интеграла (44.1) его простейшие свойства.

  • Постоянный множитель можно вынести за знак определенного
    интеграла, т.е. если Интегральное исчисление функций одной переменной — число, то
Интегральное исчисление функций одной переменной

Действительно,

Интегральное исчисление функций одной переменной

При доказательстве этого свойства мы воспользовались тем, что
постоянный множитель можно выносить как за знак суммы, так и за знак предела.

  • Определенный интеграл от суммы двух функций равен сумме
    определенных интегралов от слагаемых.
Интегральное исчисление функций одной переменной

Доказательство аналогично предыдущему.
Это свойство легко обобщается на случай не двух, а любого конечного
числа слагаемых.

  • Если в определенном интеграле поменять местами пределы
    интегрирования, то он изменит знак, т.е.
Интегральное исчисление функций одной переменной

Справедливость этого свойства вытекает из того очевидного факта,
что если точки деления брать одни и те же, то в интегральных суммах, соответствующих интегралам в обеих частях равенства Интегральное исчисление функций одной переменнойбудут равны по величине и противоположны по знаку.
Возьмем интеграл, у которого пределы одинаковы и поменяем их местами:

Интегральное исчисление функций одной переменной

Числа, отличающиеся знаком равны, если они равны нулю. Поэтому

Интегральное исчисление функций одной переменной
  • Если отрезок интегрирования Интегральное исчисление функций одной переменной точкой с разбить на две части Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной, то
Интегральное исчисление функций одной переменной

Предположим сначала, что с Интегральное исчисление функций одной переменной

Предел интегральной суммы не зависит от способа разбиения отрезка Интегральное исчисление функций одной переменнойна частичные отрезки.

Это позволяет при составлении каждой интегральной суммы
включать точку с в число точек разбиения. Пусть Интегральное исчисление функций одной переменнойТогда интегральная сумма может быть разбита на две:

Интегральное исчисление функций одной переменной

Переходя в этом равенстве к пределу при Интегральное исчисление функций одной переменнойполучим формулу (44.4).

Положим теперь, что Интегральное исчисление функций одной переменной например, Интегральное исчисление функций одной переменной Но тогда мы можем считать, что точка Интегральное исчисление функций одной переменной делит внутренним образом отрезок Интегральное исчисление функций одной переменной на отрезки Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной.

Тогда

Интегральное исчисление функций одной переменной

Но на основании формулы (44.3)

Интегральное исчисление функций одной переменной

Поэтому и при «внешнем» делении отрезка Интегральное исчисление функций одной переменнойполучим формулу (44.4).

Это свойство легко распространить на случай и большего числа точек деления отрезка Интегральное исчисление функций одной переменной

  • Если на отрезке Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

то Интегральное исчисление функций одной переменной

Действительно, так как Интегральное исчисление функций одной переменной для любых Интегральное исчисление функций одной переменной то интегральная сумма Интегральное исчисление функций одной переменной

Поэтому и предел интегральной суммы при Интегральное исчисление функций одной переменной т.е. Интегральное исчисление функций одной переменнойтакже неотрицателен.

Если же при условии 44.5 непрерывная функция Интегральное исчисление функций одной переменной хотя бы в одной точке отрезка Интегральное исчисление функций одной переменной, то

Интегральное исчисление функций одной переменной

Действительно, пусть непрерывная функция Интегральное исчисление функций одной переменной везде на Интегральное исчисление функций одной переменной но в какой-то точке Интегральное исчисление функций одной переменнойНо в силу непрерывности она положительна на каком-то отрезке Интегральное исчисление функций одной переменнойсодержащем Интегральное исчисление функций одной переменной

Разобьем отрезок Интегральное исчисление функций одной переменной двумя точками Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной на три отрезка. Тогда

Интегральное исчисление функций одной переменной

Очевидно в правой части последнего равенства первый и третий
интегралы неотрицательны, а второй положителен.

Имеет место аналогичное свойство для случая, когда на отрезке Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной

  • Если на отрезке Интегральное исчисление функций одной переменной две функции Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной удовлетворяют неравенству Интегральное исчисление функций одной переменнойто
Интегральное исчисление функций одной переменной

Иными словами, неравенство можно почленно интегрировать.

В самом деле, разность Интегральное исчисление функций одной переменнойпоэтому согласно свойству 5

Интегральное исчисление функций одной переменной

Откуда

Интегральное исчисление функций одной переменной
  • Если Интегральное исчисление функций одной переменной — непрерывная на отрезке Интегральное исчисление функций одной переменной функция, то на отрезке Интегральное исчисление функций одной переменнойсуществует хотя бы одна такая точка Интегральное исчисление функций одной переменнойчто
Интегральное исчисление функций одной переменной

Обозначим через Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойсоответственно наименьшее и наибольшее значения функции Интегральное исчисление функций одной переменнойна отрезке Интегральное исчисление функций одной переменной т.е. для любого Интегральное исчисление функций одной переменной справедливо неравенство

Интегральное исчисление функций одной переменной

Применяя свойство 6, получим

Интегральное исчисление функций одной переменной

Ho Интегральное исчисление функций одной переменной т.к. для Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Введя обозначение Интегральное исчисление функций одной переменнойполучим Интегральное исчисление функций одной переменной

Число Интегральное исчисление функций одной переменнойлежит между Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной. Так как непрерывная на отрезке Интегральное исчисление функций одной переменной функция Интегральное исчисление функций одной переменнойпринимает все промежуточные значения между наименьшим Интегральное исчисление функций одной переменной и наибольшим Интегральное исчисление функций одной переменнойто найдется такое числоИнтегральное исчисление функций одной переменной для которого Интегральное исчисление функций одной переменнойоткуда

Интегральное исчисление функций одной переменной

Итак, определенный интеграл от непрерывной функции равен
значению подынтегральной функции в некоторой внутренней точке, умноженному на длину отрезка интегрирования. Это значение называется средним интегральным значением функции на отрезке Интегральное исчисление функций одной переменной

Вычисление определенного интеграла как предела интегральной
суммы имеет только теоретическое значение, почти никогда на деле не применямое.

Получить правило вычисления определенного интеграла, имеющее практическую ценность, мы сможем очень скоро после ознакомления с двумя теоремами.

Производная интеграла по переменной верхней границе

ПустьИнтегральное исчисление функций одной переменной — непрерывная на отрезке Интегральное исчисление функций одной переменнойфункция. Рассмотрим интеграл

Интегральное исчисление функций одной переменной

Закрепим нижнюю границу а и будем изменять верхнюю границу,
тогда интеграл будет функцией своей верхней границы. Чтобы подчеркнуть, что верхняя граница переменная, обозначим ее через Интегральное исчисление функций одной переменной вместо Интегральное исчисление функций одной переменной

Переменную интегрирования, чтобы не смешивать ее с верхней
границей обозначим через Интегральное исчисление функций одной переменнойТаким образом интеграл с переменной верхней границей является функцией Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Для этой функции имеет место следующая теорема.

Теорема:

Производная интеграла по переменной верхней
границе равна подынтегральной функции, в которой переменная
интегрирования заменена верхней границей, т.е.

Интегральное исчисление функций одной переменной

Доказательство:

Найдем производную функции (44.6), исходя из
определения (см. часть 1, стр. 176, п. 14.2).

Дадим Интегральное исчисление функций одной переменнойприращение Интегральное исчисление функций одной переменнойтогда:

Интегральное исчисление функций одной переменной

Следовательно, приращение функции Интегральное исчисление функций одной переменнойравно:

Интегральное исчисление функций одной переменной

Разделим отрезок Интегральное исчисление функций одной переменнойточкой Интегральное исчисление функций одной переменной на два отрезка Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Поэтому на основании свойства 4 определенного интеграла:

Интегральное исчисление функций одной переменной

Тогда на основание формулы (44.9) соотношение (44.8) примет вид

Интегральное исчисление функций одной переменной

Применим к интегралу в правой части (44.10) теорему о среднем
значении, тогда

Интегральное исчисление функций одной переменной

Разделим обе части последнего равенства на Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Перейдя в равенстве (44.11) к пределу при Интегральное исчисление функций одной переменнойполучим искомую формулу (44.7).

Доказанная теорема является одной из основных теорем
математического анализа. Ее смысл в том, что интеграл с переменной верхней границей есть одна из первообразных подынтегральной функции.

Формула Ньютона-Лейбница

В предыдущем пункте мы
установили, что функция

Интегральное исчисление функций одной переменной

является первообразной для непрерывной подынтегральной функции Интегральное исчисление функций одной переменной

Известно, что все первообразные функции отличаются друг от друга постоянным слагаемым. Поэтому, если Интегральное исчисление функций одной переменной — другая первообразная для Интегральное исчисление функций одной переменной или

Интегральное исчисление функций одной переменной

Подставим в эту формулу Интегральное исчисление функций одной переменнойи учитывая, что

Интегральное исчисление функций одной переменнойполучим Интегральное исчисление функций одной переменной

Подставив это значение Интегральное исчисление функций одной переменнойв (44.12) и положив Интегральное исчисление функций одной переменной найдем

Интегральное исчисление функций одной переменной

Эта формула Ньютона-Лейбница. Из нее следует, что

Определенный интеграл — это приращение первообразной функции Интегральное исчисление функций одной переменной на отрезке Интегральное исчисление функций одной переменной

Вследствие этой формулы, определенный интеграл и вычисляется как приращение первообразной, а не как предел интегральной суммы.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Замена переменной в определенном интеграле

Предположим, что нужно вычислить определенный интеграл

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — непрерывная на отрезке Интегральное исчисление функций одной переменнойфункция. Перейдем от переменной Интегральное исчисление функций одной переменной к переменной Интегральное исчисление функций одной переменнойположив:

Интегральное исчисление функций одной переменной

Пусть:

Интегральное исчисление функций одной переменной

Предположим, кроме того, что

  • Функция Интегральное исчисление функций одной переменнойи ее производная Интегральное исчисление функций одной переменнойнепрерывны на отрезке Интегральное исчисление функций одной переменной
  • При изменении Интегральное исчисление функций одной переменной от Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменной значения функции Интегральное исчисление функций одной переменнойне выходят за пределы отрезка Интегральное исчисление функций одной переменной

При выполнении этих условий имеет место следующая формула
замены переменной в определенном интеграле:

Интегральное исчисление функций одной переменной

В самом деле, пусть Интегральное исчисление функций одной переменной — первообразная для функции Интегральное исчисление функций одной переменнойт.е. Интегральное исчисление функций одной переменнойТогда по формуле Ньютона-Лейбница:

Интегральное исчисление функций одной переменной

Если в первообразной Интегральное исчисление функций одной переменнойположить Интегральное исчисление функций одной переменнойто функция Интегральное исчисление функций одной переменнойбудет первообразной для подынтегральной функции преобразованного интеграла.

Интегральное исчисление функций одной переменной

В самом деле, применяя правило дифференцирования сложной
функции, получим:

Интегральное исчисление функций одной переменной

Поэтому по формуле Ньютона-Лейбница

Интегральное исчисление функций одной переменной

Равенство правых частей формул (44.16) и (44.17) и доказывает
справедливость формулы (44.15).
Рассмотрим два примера.

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Интегрирование по частям в определенном интеграле

ПустьИнтегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойфункции, непрерывные вместе со своими
производными на отрезке Интегральное исчисление функций одной переменной

Очевидно:

Интегральное исчисление функций одной переменной

Интегрируя это соотношение в пределах Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменной получим

Интегральное исчисление функций одной переменной откуда

Интегральное исчисление функций одной переменной

Формула (44.18) называется формулой интегрирования по частям в
определенном интеграле.

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Геометрический смысл определенного интеграла

Пусть Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменнойФигура, ограниченная отрезком Интегральное исчисление функций одной переменной осиИнтегральное исчисление функций одной переменнойчастью графика функции Интегральное исчисление функций одной переменнойи двумя прямыми Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной называется криволинейной трапецией.

Для нахождения ее площади поступим следующим образом.

  • Произвольным образом точками
Интегральное исчисление функций одной переменной

разобьем отрезок Интегральное исчисление функций одной переменной на частичные (элементарные) отрезки

Интегральное исчисление функций одной переменной
  • На каждом элементарном отрезке выберем по одной произвольной точке Интегральное исчисление функций одной переменной
  • С небольшой погрешностью можем принять, что на протяжении
    каждого элементарного отрезка функция Интегральное исчисление функций одной переменнойпостоянна и равна ее значению Интегральное исчисление функций одной переменнойв произвольно выбранной точке. Фактически мы заменяем площадь элементарной криволинейной трапеции с основанием Интегральное исчисление функций одной переменной на площадь прямоугольника с тем же основанием и высотой Интегральное исчисление функций одной переменной(рис. 12).
    Тогда:
Интегральное исчисление функций одной переменной
  • За точное значение площади примем предел этой интегральной суммы при Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Последнее равенство выражает геометрический смысл определенного интеграла: интеграл Интегральное исчисление функций одной переменнойравен площади криволинейной трапеции, ограниченной графиком функции Интегральное исчисление функций одной переменнойосью Интегральное исчисление функций одной переменной и вертикальными Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Физический смысл определенного интеграла

Пусть
материальная точка совершает прямолинейное движение, причем ее скорость является функцией времени: Интегральное исчисление функций одной переменной Найдем путь, пройденный точкой за промежуток времени Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменной

Поскольку движение не является равномерным мы не можем
вычислить путь по формуле

Интегральное исчисление функций одной переменной

Поэтому для подсчета пути поступим следующим образом.

  1. Разобьем отрезок Интегральное исчисление функций одной переменнойоси Ot произвольным образом на частичные отрезки точками Интегральное исчисление функций одной переменной с длинами Интегральное исчисление функций одной переменной
  2. На каждом частичном отрезке выберем по одной произвольной точке Интегральное исчисление функций одной переменной
  3. Если эти отрезки достаточно малы, то без большой погрешности движение на каждом отрезке можно считать равномерным со скоростью, равной значению функции Интегральное исчисление функций одной переменнойв произвольно выбранной точке. Тогда:
Интегральное исчисление функций одной переменной

4. За точное значение пройденного пути примем предел интегральной суммы (44.21) при условии, что число частичных отрезков неограниченно возрастает и каждый из них стягивается в точку:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Последнее равенство выражает физический смысл определенного
интеграла: пройденный путь равен определенному интегралу от скорости по времени.

Решение заданий на тему: определённый интеграл

Вспомним определение интеграла как предела интегральных сумм и
применим его при решении последующих двух задач.

Пример:

Составить формулу для вычисления интегральных сумм для функции Интегральное исчисление функций одной переменнойнепрерывной на отрезке Интегральное исчисление функций одной переменнойразделяя этот
отрезок на Интегральное исчисление функций одной переменной равных элементарных отрезков и взяв в качестве внутренней Интегральное исчисление функций одной переменной правый конец каждого отрезка
.

Решение:

Обозначим длину каждого частичного отрезка через Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Координаты точек деления:

Интегральное исчисление функций одной переменной

Значения функции Интегральное исчисление функций одной переменнойв правых концах частичных отрезков:

Интегральное исчисление функций одной переменной

Умножая каждое из этих значений на длину частичного отрезка Интегральное исчисление функций одной переменнойсоставив сумму таких произведений, получим интегральную сумму

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменнойкак предел интегральной суммы

Решение:
Предпримем такое разбиение отрезка интегрированияИнтегральное исчисление функций одной переменной на
части, чтобы абсциссы точек деления образовали геометрическую прогрессию (иными словами — длины отрезков образовывали геометрическую прогрессию)

Если знаменатель прогрессии обозначить Интегральное исчисление функций одной переменнойто абсциссы точек деления будут такими:

Интегральное исчисление функций одной переменной

Заметим на будущее, что Интегральное исчисление функций одной переменной

Длины частичных отрезков равны

Интегральное исчисление функций одной переменной

Значения функции Интегральное исчисление функций одной переменнойв левом конце каждого отрезка равны

Интегральное исчисление функций одной переменной

Умножим эти значения на соответствующие длины отрезков и
составим суммы таких произведений:

Интегральное исчисление функций одной переменной

Сумма геометрической прогрессии

Интегральное исчисление функций одной переменнойа с учетом формулы (44.8)

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Видно, что составление интегральных сумм и нахождение их пределов дело очень сложное.

К счастью существует и второе определение определенного интеграла как приращение первообразной для функции Интегральное исчисление функций одной переменнойна отрезке Интегральное исчисление функций одной переменной. С помощью такого определения решение последнего примера уместится в одной строке:

Интегральное исчисление функций одной переменной

Найдем еще несколько интегралов с помощью формулы Ньютона-Лейбница.

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Найти Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Напомним, что при замене переменной Интегральное исчисление функций одной переменнойв определенном интеграле Интегральное исчисление функций одной переменнойпосле нахождения первообразной не следует возвращаться к переменной Интегральное исчисление функций одной переменнойесли найдены значения Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной значениям соответствующие Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Сделаем подстановку Интегральное исчисление функций одной переменнойоткуда Интегральное исчисление функций одной переменнойНайдем пределы изменения Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Сделав подстановку Интегральное исчисление функций одной переменнойнайдем пределы изменения Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Сделаем первую подстановку: Интегральное исчисление функций одной переменной или Интегральное исчисление функций одной переменнойоткуда

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Следовательно Интегральное исчисление функций одной переменной

Сделаем вторую подстановку:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Замечание:

При нахождении пределов изменения Интегральное исчисление функций одной переменноймы
выбрали отрезок Интегральное исчисление функций одной переменнойтак как: ow удовлетворяет условиям 1,2 на с. 99

Замечание:

При вычислении интеграла от четной функции в
пределах, симметричных относительно нуля мы воспользовались
соотношением

Интегральное исчисление функций одной переменной

В заключение этого практического занятия найдем интегралы с
помощью формулы интегрирования по частям.

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Приложения определенного интеграла

Площадь фигуры в декартовой системе координат:
Воспользуемся известной нам формулой (44.19) нахождения площади криволинейной трапеции в декартовых координатах.

Пример:

Найти площадь эллипса, определяемого уравнением

Интегральное исчисление функций одной переменной

Решение:

Найдем площадь четверти эллипса, изображенного на
рис. 13. Он ограничен кривой

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Воспользуемся подстановкой указанной в п. 43.3,

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Площадь же всего эллипса в четыре раза больше.

Интегральное исчисление функций одной переменной

При Интегральное исчисление функций одной переменной получаем известную формулу площади круга Интегральное исчисление функций одной переменной

Пусть теперь плоская фигура такова, что любая вертикальная прямая пересекает ее не более, чем в двух точках (рис. 14).

Интегральное исчисление функций одной переменной

Следовательно, в области выполняются условия такого типа:

Интегральное исчисление функций одной переменной

Тогда согласно геометрическому смыслу определенного интеграла

Интегральное исчисление функций одной переменной

Эта формула справедлива для любого расположения кривых (в
верхней или в нижней полуплоскостях), лишь бы выполнялось условие

Интегральное исчисление функций одной переменной

Если же кривая задана в параметрическом виде:

Интегральное исчисление функций одной переменной

Эта формула получается из формулы (44.19) формальной подстановкой Интегральное исчисление функций одной переменнойЗначения параметра Интегральное исчисление функций одной переменнойсоответствуют нижней границе Интегральное исчисление функций одной переменной — верхней границе Интегральное исчисление функций одной переменной

Пример:

Найти площадь фигуры, ограниченной одной аркой
циклоиды

Интегральное исчисление функций одной переменной

осью абсцисс.

Решение:

Границам первой арки циклоиды соответствуют
значения Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Выведем теперь формулу для нахождения площади, если граница дана в полярных координатах Интегральное исчисление функций одной переменной

Воспользуемся второй схемой (рис. 16).

Интегральное исчисление функций одной переменной

С точностью до бесконечно малых высших порядков по сравнению Интегральное исчисление функций одной переменноймы можем вычислить площадь этой фигуры, как площадь сектора.
Поэтому

Интегральное исчисление функций одной переменной

Если полюс находится внутри области, то в интеграле (45.3) пределы
интегрирования от 0 до Интегральное исчисление функций одной переменной

Пример:

Найти площадь одного лепестка кривой Интегральное исчисление функций одной переменной(рис. 11)

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Объем тела по известным поперечным сечениям

Пусть
мы хотим определить объем Интегральное исчисление функций одной переменнойнекоторого тела. Предположим, что нам известны площади сечений этого тела плоскостями, перпендикулярными Интегральное исчисление функций одной переменнойНазовем эти сечения поперечными. Очевидно, что они являются функциями переменной Интегральное исчисление функций одной переменнойОбозначим через Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойабсциссы самой левой и самой правой точек тела.

Разобьем отрезок Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной частей точками

Интегральное исчисление функций одной переменной

Проведем через эти точки плоскости, перпендикулярные оси Интегральное исчисление функций одной переменнойЭти плоскости рассекут тело на Интегральное исчисление функций одной переменной слоев. Обозначим объем слоя, заключенного между двумя плоскостями, проведенными через точки Интегральное исчисление функций одной переменной через Интегральное исчисление функций одной переменной Тогда

Интегральное исчисление функций одной переменной

Рассмотрим один из слоев, заключенный между плоскостями,
проведенными через точки Интегральное исчисление функций одной переменной Его объем приближенно равен объему прямого цилиндра, высота которого равна Интегральное исчисление функций одной переменнойа основание совпадает с поперечным сечением в какой-то точке Интегральное исчисление функций одной переменной

Объем такого цилиндра равен произведению площади основания на
высоту: Интегральное исчисление функций одной переменной

Поэтому объем тела приближенно будет равен:

Интегральное исчисление функций одной переменной

За точное значение объема примем предел интегральной суммы 45.4
при условии, что длина шага рабиения отрезка стремится к нулю:

Интегральное исчисление функций одной переменной

Окончательно получаем:

Интегральное исчисление функций одной переменной

Пример:

Найти объем эллипсоида Интегральное исчисление функций одной переменной

Решение:

Найдем площадь сечения эллипсоида плоскостью,
перпендикулярной оси Интегральное исчисление функций одной переменной Ее уравнение Интегральное исчисление функций одной переменнойПодставив в уравнение эллипсоида Интегральное исчисление функций одной переменнойнайдем, что в сечении получится эллипс

Интегральное исчисление функций одной переменной

с полуосями Интегральное исчисление функций одной переменной

Его площадь (см. пример 45.2)

Интегральное исчисление функций одной переменной

А теперь положим Интегральное исчисление функций одной переменной Тогда площадь поперечного сечения эллипсоида станет функцией:

Интегральное исчисление функций одной переменной

И объем эллипсоида найдем по формуле (45.6):

Интегральное исчисление функций одной переменной

Объем тела вращения

Пусть криволинейная трапеция (рис.
18) вращается вокруг оси Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Очевидно

Интегральное исчисление функций одной переменной

Подставив это значение в формулу (45.6), получим

Интегральное исчисление функций одной переменной

Пример:

Найти объем тела, полученного вращением фигуры,
ограниченной линиями
Интегральное исчисление функций одной переменнойвокруг

а) оси абсцисс,
б) оси ординат.

Решение:

Пользуемся формулой (45.7) и такой же с заменой Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Длина дуги плоской кривой

Пусть дана кривая Интегральное исчисление функций одной переменной начальной точкой Интегральное исчисление функций одной переменной и конечной Интегральное исчисление функций одной переменной(рис. 19). Разделим ее на ряд элементарных дуг точками Интегральное исчисление функций одной переменнойПоложив Интегральное исчисление функций одной переменнойи соединив соседние точки деления отрезками, получим ломаную Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Определение:

Длиной дуги плоской кривой Интегральное исчисление функций одной переменнойназывается
предел, к которому стремится периметр вписанной в эту дугу ломаной при условии, что число звеньев неограниченно возрастает и длина каждого из звеньев стремится к нулю.

Впишем в дугу Интегральное исчисление функций одной переменнойломаную Интегральное исчисление функций одной переменной

Тогда периметр этой ломаной будет

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — длина звена Интегральное исчисление функций одной переменной По теореме Пифагора:

Интегральное исчисление функций одной переменной

Применим к отрезку Интегральное исчисление функций одной переменнойтеорему Лагранжа:

Интегральное исчисление функций одной переменной

В последнем равенстве Интегральное исчисление функций одной переменнойпринадлежит отрезку Интегральное исчисление функций одной переменнойно где точно она лежит неизвестно.

Вспомним, что в определении интеграла как предела интегральных:
сумм присутствуют произвольно выбранные точки Интегральное исчисление функций одной переменной. Так вот, в качестве «произвольных» точек выберем точки Интегральное исчисление функций одной переменнойсуществовании которых говориться в теореме Лагранжа.

Тогда периметр ломаной

Интегральное исчисление функций одной переменной

Но (45.8) есть интегральная сумма для функции Интегральное исчисление функций одной переменнойна отрезкеИнтегральное исчисление функций одной переменнойПоэтому

Интегральное исчисление функций одной переменной

Выражение

Интегральное исчисление функций одной переменной

называются дифференциалом дуги в декартовых координатах.

Если плоская дуга задана в параметрическом виде Интегральное исчисление функций одной переменной то

Интегральное исчисление функций одной переменной

и длина дуги в параметрическом виде может быть найдена по формуле

Интегральное исчисление функций одной переменной

Если же в формуле (45.10) перейти к полярным координатам по
формулам

Интегральное исчисление функций одной переменной

то надо найти

Интегральное исчисление функций одной переменной

Подставив найденные дифференциалы в формулу (45.10), получим

Интегральное исчисление функций одной переменной

откуда длина дуги в полярных координатах равна

Интегральное исчисление функций одной переменной

Пример:

Вычислить длину дуги кривой Интегральное исчисление функций одной переменнойот точки с абсциссой 1 до точки с абсциссой Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Применив подстановку

Интегральное исчисление функций одной переменной

получим

Интегральное исчисление функций одной переменной

Пример:

Найти длину одной арки циклоиды (см. пример 45.2).

Решение:

Интегральное исчисление функций одной переменной

Криволинейный интеграл по длине дуги

Пусть кривая Интегральное исчисление функций одной переменной(рис 19) находится в скалярном поле, определяемом функциейИнтегральное исчисление функций одной переменнойПо аналогии с пунктом 45.4 для кривой Интегральное исчисление функций одной переменнойопределяемом уравнением Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменнойвведем интегральную сумму

Интегральное исчисление функций одной переменной

Определение:

Предел интегральной суммы 55.10 при условии, что все Интегральное исчисление функций одной переменнойи, следовательно, Интегральное исчисление функций одной переменнойназывается криволинейным интегралом по длине дуги в скалярном поле Интегральное исчисление функций одной переменнойили криволинейным интегралом 1-го рода, и обозначается

Интегральное исчисление функций одной переменной

где дифференциал дуги Интегральное исчисление функций одной переменной

Если кривая Интегральное исчисление функций одной переменнойзадана в параметрическом виде Интегральное исчисление функций одной переменнойили в полярных координатах Интегральное исчисление функций одной переменнойто криволинейный интеграл по длине дуги будет вычисляться в соответствии с выражением дифференциала дуги (см. п. 45.4) по формулам:

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — значение параметра Интегральное исчисление функций одной переменной или полярного угла Интегральное исчисление функций одной переменной в точках Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Пример:

Вычислить криволинейный интеграл по дуге окружности Интегральное исчисление функций одной переменной от точки Интегральное исчисление функций одной переменной от точки Интегральное исчисление функций одной переменной от функции Интегральное исчисление функций одной переменной

Решение:

По формуле 55.12

Интегральное исчисление функций одной переменной

Из условия Интегральное исчисление функций одной переменнойопределяем Интегральное исчисление функций одной переменнойиз условия Интегральное исчисление функций одной переменнойнаходим Интегральное исчисление функций одной переменнойПоскольку Интегральное исчисление функций одной переменнойполучаем:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Следует обратить внимание на то, что точки Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойвыбирались таким образом, чтобы выполнялось условие Интегральное исчисление функций одной переменной

Установим физический смысл криволинейного интеграла по длине
дуги. Пусть вдоль кривой Интегральное исчисление функций одной переменнойраспределена масса с линейной плотностью Интегральное исчисление функций одной переменнойНапомним, что линейной плотностью массы Интегральное исчисление функций одной переменнойв точке Интегральное исчисление функций одной переменной называется предел отношения массы участка дуги Интегральное исчисление функций одной переменнойсодержащего точкуИнтегральное исчисление функций одной переменной его длине, когда длина стремится к нулю (т.е. участок стягивается в точку Интегральное исчисление функций одной переменной).Тогда приближенное значение массы Интегральное исчисление функций одной переменной участка Интегральное исчисление функций одной переменной(см. рис. 19) будет равно Интегральное исчисление функций одной переменнойСуммируя, найдем приближенное значение массы всей дуги Интегральное исчисление функций одной переменной Точное значение массы получится предельным переходом и, в соответствии с
определением 55.2, будет равно криволинейному интегралу:

Интегральное исчисление функций одной переменной

Если Интегральное исчисление функций одной переменнойформула 55.14 переходит в формулу 45.9 для вычисления дуги Интегральное исчисление функций одной переменной

Пример:

Найти массу проволоки, имеющей форму параболы Интегральное исчисление функций одной переменнойна участке Интегральное исчисление функций одной переменнойесли плотность определяется формулой Интегральное исчисление функций одной переменной

Решение: По формуле 55.14, учитывая, что Интегральное исчисление функций одной переменнойполучаем:

Интегральное исчисление функций одной переменной

Позже мы рассмотрим криволинейные интегралы Интегральное исчисление функций одной переменной рода, которые
имеют более широкие приложения.

Площадь поверхности вращения

Воспользуемся второй
схемой применения определенного интеграла. При вращении вокруг оси Интегральное исчисление функций одной переменной элементарной трапеции с основанием Интегральное исчисление функций одной переменнойполучится усеченный конус, боковая поверхность которого равна
произведению длины средней линии на апофему:

Интегральное исчисление функций одной переменной — откуда

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Вычислить объем и поверхность шара,
рассматривая его как тело вращения.

Решение:

Будем считать, что сфера образована вращением
окружности Интегральное исчисление функций одной переменной вокруг оси Интегральное исчисление функций одной переменной. Чтобы найти объем шара по формуле 45.7, найдем из уравнения окружности

Интегральное исчисление функций одной переменной

Переменная интегрирования изменяется от Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменнойПоэтому

Интегральное исчисление функций одной переменной

Вычислим теперь площадь сферы по формуле 45.17. Из уравнения
окружности

Интегральное исчисление функций одной переменной

Подставляя это значение корня в 45.17, найдем

Интегральное исчисление функций одной переменной

Приложение определенного интеграла к решению физических задач

Пример:

Сила тока Интегральное исчисление функций одной переменной является заданной непрерывной функцией времени Интегральное исчисление функций одной переменнойОпределить количество электричества Интегральное исчисление функций одной переменнойпротекшего через поперечное сечение проводника за время Интегральное исчисление функций одной переменной от момента начала эксперимента.

Решение:

1. Разделим отрезок времени Интегральное исчисление функций одной переменнойточками Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменнойэлементарных отрезков

Интегральное исчисление функций одной переменной

Обозначим Интегральное исчисление функций одной переменной

2. На каждом отрезке выберем по одной произвольной точке Интегральное исчисление функций одной переменной

3. Будем считать, что за время Интегральное исчисление функций одной переменнойсила тока не изменяется и равна значению функции Интегральное исчисление функций одной переменнойв произвольно выбранной внутренней точке Интегральное исчисление функций одной переменнойт.е. Интегральное исчисление функций одной переменной

Так ка для постоянного тока количество электричества, протекшее
через поперечное сечение проводника равно произведению силы тока на время, то на каждом элементарном отрезке

Интегральное исчисление функций одной переменной

а на всем проводнике

Интегральное исчисление функций одной переменной

4. За точное значение Интегральное исчисление функций одной переменнойпримем предел этой интегральной суммы при условии, что число элементарных отрезков неограниченно возрастает и каждый из них стягивается в точку:

Интегральное исчисление функций одной переменной

В последней формуле Интегральное исчисление функций одной переменнойдлина наибольшего частичного отрезка.
На основании формулы (44.1) окончательно получаем

Интегральное исчисление функций одной переменной

Пример:

Тяжелая цепь длиною Интегральное исчисление функций одной переменнойподнимается,
навиваясь на ворот. Определить работу силы веса при подъеме цепи, если погонный метр весит 50 кг. Размерами ворота пренебречь.

Решение:

Пусть к некоторому моменту времени на ворот
навернулся отрезок цепи длиной Интегральное исчисление функций одной переменной. Тогда свешивается часть цепи длиной Интегральное исчисление функций одной переменнойВесит эта часть Интегральное исчисление функций одной переменной

Элементарная работа силы веса на перемещении Интегральное исчисление функций одной переменнойбудет равна

Интегральное исчисление функций одной переменной

Полную работу найдем по формуле:

Интегральное исчисление функций одной переменной

Замечание:

Знак минус поставлен потому, что сила веса
направлена противоположно перемещению.

Пример:

Скорость движения материальной точки
выражается формулой Интегральное исчисление функций одной переменнойКакой путь пройдет эта точка за первые 2 с движения.

Решение:

Интегральное исчисление функций одной переменной

Решение заданий на тему: Приложения определенного интеграла

Пример:

Найти площадь, ограниченную графиками функций Интегральное исчисление функций одной переменной(см. рис. 21).

Решение:

Найдем площадь двумя способами,

а) Как разность площадей криволинейных трапеций с основаниями на оси Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

б) Как разность площадей криволинейных трапеций с основаниями на оси Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной В этом случае вместо ординат из уравнений

Интегральное исчисление функций одной переменной

верхней и нижней границ области используется абсциссы из уравнений правой и левой границ области.

Интегральное исчисление функций одной переменной

Пример:

Найти площадь, ограниченную эллипсом

Интегральное исчисление функций одной переменной

Решение:

Воспользуемся формулой (45.2) для вычисления площади,
ограниченной кривой, заданной в параметрическом виде:

Интегральное исчисление функций одной переменной

Найдем всю площадь, как учетверенную площадь четверти эллипса.

Так как

Интегральное исчисление функций одной переменной

то

Интегральное исчисление функций одной переменной

Напомним, что ранее ( см. упр. 45.1) мы нашли площадь того же
эллипса в декартовых координатах.

Интегральное исчисление функций одной переменной

Пример:

Найти площадь одного лепестка четырехлепестковой розы Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Решение:

Один лепесток ограничен кривой Интегральное исчисление функций одной переменнойи двумя лучами Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойПоэтому

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Замечание:

Очевидно шар является эллипсоидом с
одинаковыми осями
Интегральное исчисление функций одной переменной

Поставив это значение Интегральное исчисление функций одной переменной в формулу объема эллипсоида вместо Интегральное исчисление функций одной переменнойи с получим известную формулу объема шара Интегральное исчисление функций одной переменной

Пример:

Найти объем тела вращения фигуры, ограниченной линиями Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной вокруг осей Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной

Решение:

Этот объем равен разности двух объемов (см. рисунок 21) Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной. Интегральное исчисление функций одной переменной— объем тела вращения трапеции Интегральное исчисление функций одной переменной а Интегральное исчисление функций одной переменной — треугольника Интегральное исчисление функций одной переменнойвокруг оси Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Объем тела вращения вокруг оси Интегральное исчисление функций одной переменнойнайдем по формуле аналогичной (45.7) с заменой Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменной:

Интегральное исчисление функций одной переменной

В нашем случае

Интегральное исчисление функций одной переменной

Пример:

Вычислить поверхность сферы, радиуса Интегральное исчисление функций одной переменнойрассматривая ее как тело вращения.
Решение:

Будем считать, что сфера образована вращением Интегральное исчисление функций одной переменной вокруг оси Интегральное исчисление функций одной переменной. Найдем из этого соотношения

Интегральное исчисление функций одной переменной

Подставляя эти значения в формулу

Интегральное исчисление функций одной переменной

найдем

Интегральное исчисление функций одной переменной

Пример:

Найти длину дуги кривой Интегральное исчисление функций одной переменной

Решение:

Длина дуги в декартовых координатах находится по
формуле (45.9). В нашем случае

Интегральное исчисление функций одной переменной

Пример:

Найти длину окружности радиуса Интегральное исчисление функций одной переменной заданной параметрическими уравнениями

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Пример:

Найти длину кривой Интегральное исчисление функций одной переменной

Решение:

Длина дуги в полярных координатах находится по
формуле (45.11).

Находим: Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

В заключение этого занятия решим задачу на физическое приложение определенного интеграла.

Пример:

К телу прикреплена пружина, другой конец которой
закреплен неподвижно в точке
Интегральное исчисление функций одной переменной

Упругая сила, с которой действует пружина на тело, подчиняется
закону Гука, согласно которому Интегральное исчисление функций одной переменнойгде Интегральное исчисление функций одной переменной коэффициент пропорциональности, а Интегральное исчисление функций одной переменной удлинение пружины. Найти работу упругой силы при прямолинейном перемещении по линии действия силы от Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменной

Решение:

Элементарная работа Интегральное исчисление функций одной переменной силы упругости при перемещении Интегральное исчисление функций одной переменнойравна

Интегральное исчисление функций одной переменной

Следовательно, вся работа при перемещении от Интегральное исчисление функций одной переменной до Интегральное исчисление функций одной переменной определится по формуле:

Интегральное исчисление функций одной переменной

Приближенное вычисление определенного интеграла

Вычисление интегралов с помощью рядов. Методы трапеций и
Симпсона. Оценка ошибок.

Постановка задачи: Пусть требуется найти определенный интеграл Интегральное исчисление функций одной переменнойЕсли функция Интегральное исчисление функций одной переменнойнепрерывна на отрезке Интегральное исчисление функций одной переменной и может быть найдена ее первообразная Интегральное исчисление функций одной переменнойто по формуле Ньютона-Лейбница (44.13).

Интегральное исчисление функций одной переменной

Если же первообразная не может быть найдена или функция Интегральное исчисление функций одной переменной задана графически или таблично, то для вычисления интеграла прибегают к приближенным формулам, точность которых может быть сколь угодно большой.

Чаще всего формулы приближенного интегрирования вытекают из
геометрического смысла определенного интеграла как площади
криволинейной трапеции. Следовательно, задача о приближенном вычислении интеграла заменяется другой, равносильной ей — задачей о нахождении площади криволинейной трапеции.

При этом кривая Интегральное исчисление функций одной переменной заменяется другой достаточно «близкой» к ней.
В качестве этой новой кривой выбирают такую, для которой площадь криволинейной трапеции подсчитывается просто, т.е. для которой мы легко можем найти первообразную. В зависимости от выбора этой кривой, и различаются формулы приближенного интегрирования.

Предположим сначала, что

Интегральное исчисление функций одной переменной

Разобьем отрезок Интегральное исчисление функций одной переменной на Интегральное исчисление функций одной переменнойравных частей точками

Интегральное исчисление функций одной переменной

Длина Интегральное исчисление функций одной переменной каждого малого отрезка Интегральное исчисление функций одной переменной

Через точки деления проведем вертикальные прямые. Пусть они
пересекают кривую Интегральное исчисление функций одной переменнойв точках Интегральное исчисление функций одной переменнойИнтегральное исчисление функций одной переменной

Формулы прямоугольников

Заменим кривую Интегральное исчисление функций одной переменной
ломаной, расположенной выше ее. Тогда определенный интеграл будет приблизительно равен площади Интегральное исчисление функций одной переменнойпрямоугольников

Интегральное исчисление функций одной переменной

Если же кривую Интегральное исчисление функций одной переменнойзаменить ломаной, расположенной ниже ее, то получится формула

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Формулы 46.2 и 46.3 называются формулами прямоугольников.

Формула трапеций

Соединив каждые две соседние точки
деления отрезками прямых, заменим кривую Интегральное исчисление функций одной переменнойвписанной в нее ломаной. Площадь элементарной криволинейной трапеции с основанием Интегральное исчисление функций одной переменнойзаменим площадью трапеции, ограниченной сверху прямой Интегральное исчисление функций одной переменной(рис. 25).

Интегральное исчисление функций одной переменной

Тогда площадь криволинейной трапеции, ограниченной ломаной Интегральное исчисление функций одной переменнойбудет приблизительно равна площади криволинейной трапеции, ограниченной кривой Интегральное исчисление функций одной переменнойт.е. интегралу Интегральное исчисление функций одной переменной

Но свойству аддитивности площадь фигуры, ограниченной ломаной
равна сумме площадей прямолинейных трапеций, ограниченных сверху звеньями этой ломаной.
Площадь каждой такой трапеции легко подсчитать. Надо только
понять, что в отличие от привычного расположения трапеции (основания горизонтальны) эти трапеции расположены так, что их основания вертикальны.
Длины этих оснований — ординаты смежных точек деления. Высота
каждой малой трапеции равна Интегральное исчисление функций одной переменной

Следовательно, площадь всех таких трапеций

Интегральное исчисление функций одной переменной

После очевидных преобразований получим

Интегральное исчисление функций одной переменной

Таким образом, имеем приближенную формулу вычисления
определенного интеграла

Интегральное исчисление функций одной переменной

называемую формулой трапеций.

Формула параболических трапеций (Симпсона)

Предположим, что число делений четное Интегральное исчисление функций одной переменнойВозьмем две примыкающие друг к другу малые трапеции (рис. 26)

Интегральное исчисление функций одной переменной

Абсциссы левой и правой точек основания обозначим Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменной середины отрезка Интегральное исчисление функций одной переменной

Пусть на кривой Интегральное исчисление функций одной переменнойим соответствуют точки Интегральное исчисление функций одной переменнойУравнение такой параболы:

Интегральное исчисление функций одной переменной

Можно показать справедливость формулы

Интегральное исчисление функций одной переменной

Для того, чтобы убедится в справедливости формулы достаточно
вычислить ее левую и правую части.

Поэтому

Интегральное исчисление функций одной переменной

Следовательно,

Интегральное исчисление функций одной переменной

Эта формула называется формулой параболических трапеций.

Замечание:

По определению (см. 44.2)

Интегральное исчисление функций одной переменной

Заменяя предел приближенным равенством, получим

Интегральное исчисление функций одной переменной

Все формулы численного интегрирования, рассмотренные ниже,
вытекают из (46.6) и отличаются друг от друга только выбором точек
Интегральное исчисление функций одной переменной

Можно показать справедливость формул прямоугольников, трапеций и Симпсона и в случае, если условие 46.1 не выполняются.

Интегральное исчисление функций одной переменной

Оценка ошибок

Рассмотрим одну элементарную
криволинейную трапецию (рис. 27). Ошибка при замене ее площади площадью прямоугольника равна

Интегральное исчисление функций одной переменной

По формуле Лагранжа приращение функции на отрезке равно длине
этого отрезка, умноженной на значение производной функции в некоторой точке:

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — наибольшее значение производной функции Интегральное исчисление функций одной переменной на отрезке Интегральное исчисление функций одной переменной

Так как всего отрезков деления

Интегральное исчисление функций одной переменной

то оценка абсолютной погрешности увеличится в Интегральное исчисление функций одной переменнойраз:

Интегральное исчисление функций одной переменной

а с учетом формулы (46.7):

Интегральное исчисление функций одной переменной

Аналогично можно вывести оценки ошибок для методов трапеций и
Симпсона:

Интегральное исчисление функций одной переменной

В этих формулах Интегральное исчисление функций одной переменнойна отрезке Интегральное исчисление функций одной переменной

Для оценки погрешностей вычислений по формулам трапеций и
Симпсона существуют еще и формулы, которые мы приводим без доказательств:

Интегральное исчисление функций одной переменной

При вычисление интегралов с помощью этих формул обычно
поступают так:

  • вычисляют интеграл при числе точек деления п и 2п
  • сравнивают результаты вычислений и оставляют все первые
    совпадающие знаки.

Пример:

На сколько частей надо разделить отрезок
интегрирования [0;1], чтобы вычислить по формулам численного интегрированный интеграл Интегральное исчисление функций одной переменнойс точностью Интегральное исчисление функций одной переменной

Решение:

Длина отрезка интегрирования Интегральное исчисление функций одной переменнойучитывая, что наибольшее значение всех производных:

Интегральное исчисление функций одной переменной

согласно формулам (46.8), (46.9) и (46.10) получим для

  1. Формул прямоугольников.
Интегральное исчисление функций одной переменной

2. Формулы трапеций.

Интегральное исчисление функций одной переменной

3. Формулы Симпсона.

Интегральное исчисление функций одной переменной

Вычисление интегралов с помощью рядов

Этот метод
приближенного нахождения определенных интегралов основан на
разложении подынтегральной функции в ряд Тейлора с последующим интегрированием каждого слагаемого этого ряда. При нахождении определенного интеграла сумма ряда заменяется его частичной суммой с последующей оценкой ошибки.

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной с точностью Интегральное исчисление функций одной переменной

Решение:

Это — известный «интеграл вероятностей». Разложим
подынтегральную функцию в ряд Маклорена:

Интегральное исчисление функций одной переменной

Интеграл от каждого слагаемого легко находится. Поэтому при Интегральное исчисление функций одной переменнойполучим:

Интегральное исчисление функций одной переменной

Полученный ряд знакочередующийся.

Для него очень проста оценка ошибки — надо взять столько членов
ряда, чтобы первый отброшенный по абсолютной величине не превышал погрешности. Так как Интегральное исчисление функций одной переменной то с точностью до Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Решение заданий на тему: Приближенное вычисление определенного интеграла

При решении примеров этого занятия необходимо вспомнить формулы трапеций (46.4) и Симпсона (46.5).

Пример:

Вычислить по формулам трапеций и Симпсона интеграл

Интегральное исчисление функций одной переменной

Вычисления вести с пятью десятичными знаками. Отрезок
интегрирования разбить на 10 частей.

Решение:

Для оценки погрешностей мы будем приближенно
вычислять интеграл, точное значение которого известно:

Интегральное исчисление функций одной переменной

Для применения обеих численных формул вычислим значения
подынтегральной функции Интегральное исчисление функций одной переменнойв точках деления отрезка интегрирования. Эти данные занесем в таблицу:

Интегральное исчисление функций одной переменной

По формуле трапеций:

Интегральное исчисление функций одной переменной

В формуле Симпсона число делений отрезка берется четным Интегральное исчисление функций одной переменной

Поэтому множитель Интегральное исчисление функций одной переменнойпри Интегральное исчисление функций одной переменной будет равен Интегральное исчисление функций одной переменнойСледовательно,

Интегральное исчисление функций одной переменной

При пользовании формулой трапеций только два знака после запятой верные, при расчете по формуле Симпсона — все пять.

Пример:

Найти число Интегральное исчисление функций одной переменной пользуясь интегралом

Интегральное исчисление функций одной переменной

Решение:

С шестью верными знаками Интегральное исчисление функций одной переменной

Разделим отрезок интегрирования на 10 частей (Интегральное исчисление функций одной переменнойв формуле трапеций и Интегральное исчисление функций одной переменной в формуле Симпсона).

Эти данные занесем в таблицу:

Интегральное исчисление функций одной переменной

Найдем суммы, необходимые нам в обеих формулах.

Интегральное исчисление функций одной переменной

Тогда интеграл по формулам трапеций и Симпсона равен:

Интегральное исчисление функций одной переменной

Применение формулы трапеций дает 3 верных знака, Симпсона — все 6

Вычислим теперь интегралы из упражнений этого занятия с помощью разложения подынтегральных функций в ряды Маклорена.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

разлагая подынтегральную функцию в ряд и заменив его сумму суммой первых семи членов. Вычисления вести с четырьмя знаками после запятой.

Решение:

Известно разложение Интегральное исчисление функций одной переменнойв ряд Маклорена:

Интегральное исчисление функций одной переменной

Беря интеграл от каждого члена разложения, получим:

Интегральное исчисление функций одной переменной

Все четыре цифры после запятой — верные.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

с точностью 0,001, разлагая подынтегральную функцию в ряд
Маклорена (см. том 1 с 234)-

Решение:

Воспользуемся формулой суммы бесконечно убывающей
геометрической прогрессии:

Интегральное исчисление функций одной переменной

С помощью этой формулы разложим подынтегральную функцию в ряд:

Интегральное исчисление функций одной переменной

Поэтому, беря интеграл от каждого слагаемого, получим:

Интегральное исчисление функций одной переменной

В полученном знакочередующемся ряду проста оценка погрешности.
Необходимо учитывать только члены ряда, большие по абсолютной
величине погрешности.

Интегральное исчисление функций одной переменной

Несобственный интеграл

Интегралы с бесконечными пределами. Интегралы от разрывных
функций. Признаки сходимости несобственных интегралов.

Определение интеграла (44.1) основано на следущих условиях:

  • областью интегрирования является отрезок Интегральное исчисление функций одной переменной
  • подынтегральная функция Интегральное исчисление функций одной переменнойнепрерывна на этом отрезке.

Если хотя бы одно из этих условий не выполняется, то обычное
определение интеграла становится неприемлемым.
Обобщим, поэтому, понятие определенного интеграла на случаи, когда эти условия не выполняются.

Интегралы с бесконечными пределами

Пусть в интеграле верхний предел бесконечный: Интегральное исчисление функций одной переменной

Поступим следущим образом:

  1. Заменим бесконечный предел на конечный, например, Интегральное исчисление функций одной переменной

2. Вычислим Интегральное исчисление функций одной переменнойОчевидно он будет функцией переменной Интегральное исчисление функций одной переменной

3. Найдем предел этого интеграла при условии, что Интегральное исчисление функций одной переменной
Этот предел называют несобственным интегралом с бесконечным пределом и обозначают Интегральное исчисление функций одной переменной

Таким образом

Интегральное исчисление функций одной переменной

Если предел существует, то несобственный интеграл называется
сходящимся (существует), в противном случае — расходящимся (не
существует).

Пример:

Исследовать на сходимость интеграл Интегральное исчисление функций одной переменной

Решение:

Заменим бесконечный предел на конечный:

Интегральное исчисление функций одной переменной

Находим интеграл, а затем его предел.

Если Интегральное исчисление функций одной переменнойто первообразная равна Интегральное исчисление функций одной переменнойи при Интегральное исчисление функций одной переменнойлогарифм неограниченно возрастает — интеграл расходится.

При Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

При Интегральное исчисление функций одной переменной предел равен бесконечности — интеграл расходится.

При Интегральное исчисление функций одной переменнойпредел равен Интегральное исчисление функций одной переменной — интеграл сходится.

Рис. 28 иллюстрирует этот пример.

Обратите внимание на то, что фигура, неограниченная справа может
ограничивать площадь, имеющую предел (если соответствующая кривая при Интегральное исчисление функций одной переменной лежит ниже пунктирной).

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной
Интегральное исчисление функций одной переменной

Следовательно, интеграл существует (сходится) и равен Интегральное исчисление функций одной переменной.

Пример:

Найти интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Таким образом, интеграл не существует (расходится).
Аналогично определяется интеграл с бесконечным нижним пределом:

Интегральное исчисление функций одной переменной

Интеграл, у которого оба предела бесконечны определяется формулой

Интегральное исчисление функций одной переменной

где Интегральное исчисление функций одной переменной — любая фиксированная точка.

Интеграл в левой части (47.4) существует (сходится), если
существуют оба интеграла в его правой части.

Пример:

Исследовать на сходимость интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Вычислим первый интеграл:

Интегральное исчисление функций одной переменной

Вычислим второй интеграл:

Интегральное исчисление функций одной переменной

Поэтому

Интегральное исчисление функций одной переменной

Следовательно, интеграл существует (сходится) и равен 0.

Замечание:

Иногда замена переменной может превратить
несобственный интеграл в определенный.

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Введем новую переменную и найдем соответствующие
пределы интегрирования.

Интегральное исчисление функций одной переменной

Тогда:

Интегральное исчисление функций одной переменной

ЗАМЕЧАНИЕ 47.19. При решении примеров, связанных с
несобственными интегралами допускается следующая формальная запись:

Интегральное исчисление функций одной переменной

где понимается, что Интегральное исчисление функций одной переменной

Интегралы от разрывных функций

Пусть функция Интегральное исчисление функций одной переменнойнепрерывна на промежутке Интегральное исчисление функций одной переменнойи в точке Интегральное исчисление функций одной переменнойимеет разрыв. Что же в таком случае понимать под выражением Интегральное исчисление функций одной переменной

Поступим следущим образом

  1. Заменим верхний предел Интегральное исчисление функций одной переменной точкой Интегральное исчисление функций одной переменнойПо определению По определению Интегральное исчисление функций одной переменной непрерывна на отрезке Интегральное исчисление функций одной переменной

2. Вычислим определенный интеграл Интегральное исчисление функций одной переменной

3. Найдем предел этого определенного интеграла при Интегральное исчисление функций одной переменной

Этот предел называют несобственным интегралом от разрывной
функции. Если предел существует, то говорят, что интеграл сходится
(существует). В противном случае интеграл расходится (не существует).

Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Подынтегральная функция Интегральное исчисление функций одной переменной имеет разрыв в точке Интегральное исчисление функций одной переменнойправой границе области интегрирования. Поэтому

Интегральное исчисление функций одной переменной

Следовательно, интеграл расходится (не существует)

Если же подынтегральная функция Интегральное исчисление функций одной переменной непрерывна на Интегральное исчисление функций одной переменной то интеграл Интегральное исчисление функций одной переменнойопределяется так:

Интегральное исчисление функций одной переменной

Если же точка разрыва Интегральное исчисление функций одной переменной лежит внутри отрезка Интегральное исчисление функций одной переменной то

Интегральное исчисление функций одной переменной

Интеграл в левой части равенства называется сходящимся, если
существуют оба интеграла в правой части.

Пример:

Исследовать на сходимость интеграл Интегральное исчисление функций одной переменной

Решение:

Подынтегральная функция разрывная в точке Интегральное исчисление функций одной переменнойПоэтому рассмотрим отдельно интегралы Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойЛегко убедится, что оба интеграла не существуют. Так

Интегральное исчисление функций одной переменной

Следовательно, по определению не существует интеграл Интегральное исчисление функций одной переменной

Замечание:

Если действовать формально, применяя
формулу Ньютона-Лейбница, то получили бы заведомо неверный результат

Интегральное исчисление функций одной переменной

Эта ошибка вызвана неправильным применением формулы Ньютона- Лейбница.

Замечание:

Все виды несобственных интегралов можно
определить как пределы определенных интегралов (а не пределы
интегральных сумм).

Признаки сходимости несобственных интегралов

Иногда нет необходимости вычислять несобственный интеграл, а достаточно лишь знать сходится ли он или нет.
В таких случаях бывает полезно сравнить данный несобственный
интеграл с другим, сходимость или расходимость которого заранее известна.
Приведем без вывода теоремы, устанавливающие признаки сходимости или расходимости, основанные на сравнении несобственных интегралов.

Теорема:

Пусть на промежутке Интегральное исчисление функций одной переменнойфункции Интегральное исчисление функций одной переменнойи Интегральное исчисление функций одной переменнойнепрерывны и удовлетворяют условиям

Интегральное исчисление функций одной переменной

Тогда

а) если интеграл Интегральное исчисление функций одной переменнойсходится, то сходится и интеграл

Интегральное исчисление функций одной переменной

б) если интеграл Интегральное исчисление функций одной переменной расходится, то расходится и интеграл Интегральное исчисление функций одной переменной

Пример:

Исследовать на сходимость интеграл: Интегральное исчисление функций одной переменной

Решение:

Ранее (см. пример 47.2) было найдено, что интеграл Интегральное исчисление функций одной переменнойсходится. Так как на Интегральное исчисление функций одной переменнойто интеграл Интегральное исчисление функций одной переменнойтакже сходится.

Теорема:

Пусть функции Интегральное исчисление функций одной переменной и Интегральное исчисление функций одной переменнойна промежутке Интегральное исчисление функций одной переменнойнепрерывны и удовлетворяют условиям

Интегральное исчисление функций одной переменной

в точке Интегральное исчисление функций одной переменной имеют разрыв.

Тогда

а) если интеграл Интегральное исчисление функций одной переменнойсходится, то сходится и интеграл Интегральное исчисление функций одной переменной

б) если интеграл Интегральное исчисление функций одной переменнойрасходится, то сходится и интеграл Интегральное исчисление функций одной переменной

Пример:

Исследовать на сходимость интеграл: Интегральное исчисление функций одной переменной

Решение:

Подынтегральная функция непрерывна на Интегральное исчисление функций одной переменной и имеет бесконечный разрыв в точке Интегральное исчисление функций одной переменной Сравним ее с функцией Интегральное исчисление функций одной переменнойтакже непрерывной на Интегральное исчисление функций одной переменной и имеющей бесконечный разрыв в точке Интегральное исчисление функций одной переменной

Для всех Интегральное исчисление функций одной переменнойимеет место неравенство Интегральное исчисление функций одной переменной

Но тогда Интегральное исчисление функций одной переменной

Таким образом, подынтегральная функция Интегральное исчисление функций одной переменной в промежутке Интегральное исчисление функций одной переменной меньше функции Интегральное исчисление функций одной переменной

Вычислим интеграл Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Так как он сходится, то сходится и исходный интеграл.

Интегральный признак сходимости знакоположительных рядов

В 12 лекции первого тома были рассмотрены признаки
сходимости знакоположительных рядов — сравнения, Даламбера, Коши (радикальный).
Познакомимся еще с одним — интегральным признаком Коши.

Теорема:

Пусть члены знакоположительного ряда

Интегральное исчисление функций одной переменной

являются значениями при

Интегральное исчисление функций одной переменной

некоторой функции Интегральное исчисление функций одной переменнойположительной, непрерывной, убывающей на промежутке Интегральное исчисление функций одной переменнойтак что

Интегральное исчисление функций одной переменной

Рассмотрим несобственный интеграл

Интегральное исчисление функций одной переменной

Тогда на основании интегрального признака Коши, принимаемого
нами без доказательства:

I.Ecлu сходится интеграл (47.9), сходится ряд (47.8).
2.Если расходится интеграл (47.9) , то расходится ряд (47.8).

Пример:

Исследовать на сходимость обобщенный
гармонический ряд

Интегральное исчисление функций одной переменной

Решение:

Согласно (47.2) интеграл Интегральное исчисление функций одной переменной

Сходится при Интегральное исчисление функций одной переменнойи расходится при Интегральное исчисление функций одной переменной

Следовательно, и ряд 47.10 сходится при Интегральное исчисление функций одной переменной и расходится при Интегральное исчисление функций одной переменной

Решение заданий на тему: Несобственные интегралы

При решении примеров этого занятия необходимо вспомнить
определения несобственных интегралов, а также признаки их сходимости (расходимости).

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

При Интегральное исчисление функций одной переменной так как Интегральное исчисление функций одной переменной при Интегральное исчисление функций одной переменной

Ясно, что при Интегральное исчисление функций одной переменной несобственный интеграл расходится.

Поэтому заключаем, что исходный интеграл сходится при Интегральное исчисление функций одной переменной и равен в этом случае Интегральное исчисление функций одной переменной При Интегральное исчисление функций одной переменной интеграл расходится и суммы не имеет.

Пример:

Вычислить интеграл Интегральное исчисление функций одной переменной

Решение:

Решение оформим с учетом замечания 47.19:

Интегральное исчисление функций одной переменной

Но Интегральное исчисление функций одной переменной при Интегральное исчисление функций одной переменной не стремится ни к какому пределу, совершая колебания от -1 до 1. Следовательно, интеграл расходится.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

Интегральное исчисление функций одной переменной

Мы воспользовались тем, что Интегральное исчисление функций одной переменной

Следовательно, интеграл сходится и равен Интегральное исчисление функций одной переменной

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

У данного несобственного интеграла оба предела
бесконечны. Разобьем его на два, например, точкой 0:

Интегральное исчисление функций одной переменной

Вычислим их:

Интегральное исчисление функций одной переменной

Так как оба интеграла сходятся, то исходный интеграл сходится и
равен:

Интегральное исчисление функций одной переменной

Напомним, что иногда достаточно не вычисляя интеграла только
выяснить сходится он или нет. В таких случаях необходимо пользоваться признаками сходимости интегралов.

Пример:

Исследовать на сходимость интеграл

Интегральное исчисление функций одной переменной

Решение:

На промежутке Интегральное исчисление функций одной переменнойподынтегральная функция данного интеграла не больше, чем у сходящегося интеграла примера 47.3:

Интегральное исчисление функций одной переменной

Поэтому данный интеграл сходится (заметим, что сумма его не
найдена, но в данном примере она нас не интересует).

Пример:

Исследовать на сходимость интеграл

Интегральное исчисление функций одной переменной

Решение:
Используем для доказательства сходимости интеграла признак
сравнения.
Проделаем элементарные преобразования:

Интегральное исчисление функций одной переменной

Так как функция Интегральное исчисление функций одной переменноймонотонная, то

Интегральное исчисление функций одной переменной

Из примера 47.1 следует, что интеграл

Интегральное исчисление функций одной переменной

сходится. Поэтому сходится и исходный интеграл.
Он называется интегралом вероятностей, Для него составлены
подробные таблицы.

Пример:

Исследовать на сходимость интеграл

Интегральное исчисление функций одной переменной

Решение:
Рассмотрим несобственный интеграл:

Интегральное исчисление функций одной переменной

Покажем, что он расходится:

Интегральное исчисление функций одной переменной

Так как начиная с некоторого числа Интегральное исчисление функций одной переменнойто на основании признака сравнения исходный интеграл расходится.

Решим физическую задачу, приводящую к несобственному интегралу.

Пример:

В начале координат Интегральное исчисление функций одной переменной находится масса Интегральное исчисление функций одной переменнойкоторая притягивает по закону Ньютона с силой, модуль которой Интегральное исчисление функций одной переменнойматериальную точку Интегральное исчисление функций одной переменной единичной массы, находящуюся на оси Интегральное исчисление функций одной переменной на расстоянии Интегральное исчисление функций одной переменнойот начала координат.

Вычислить работу Интегральное исчисление функций одной переменной которую произведет эта сила при перемещении Интегральное исчисление функций одной переменной в бесконечность из положения Интегральное исчисление функций одной переменной

Решение:
Так как сила притяжения направлена к началу координат, т.е. против движения, то работа будет отрицательной.

На основании закона Ньютона:

Интегральное исчисление функций одной переменной

Перейдем теперь к интегралам от разрывных функций.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:

Очевидно, при Интегральное исчисление функций одной переменной подынтегральная функция Интегральное исчисление функций одной переменнойнеограниченно возрастает. Ясно, что она непрерывна на отрезке Интегральное исчисление функций одной переменной

По определению несобственного интеграла от разрывных функций
имеем:

Интегральное исчисление функций одной переменной

Следовательно, интеграл сходится и равен двум.

Пример:

Вычислить интеграл

Интегральное исчисление функций одной переменной

Решение:
Особая точка лежит внутри отрезка интегрирования. Поэтому
разобьем интеграл на два:

Интегральное исчисление функций одной переменной

У первого интеграла особой точкой является верхняя граница
интегрирования, у второго — нижняя.
Исследуем на сходимость Интегральное исчисление функций одной переменной

Интегральное исчисление функций одной переменной

Так как Интегральное исчисление функций одной переменнойрасходится, то независимо от того, сходится или расходится Интегральное исчисление функций одной переменной исходный интеграл расходится.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторный анализ
  129. Векторы
  130. Скалярное произведение векторов
  131. Векторное произведение векторов
  132. Смешанное произведение векторов
  133. Операции над векторами
  134. Непрерывность функций
  135. Предел и непрерывность функций нескольких переменных
  136. Предел и непрерывность функции одной переменной
  137. Производные и дифференциалы функции одной переменной
  138. Частные производные и дифференцируемость функций нескольких переменных
  139. Дифференциальное исчисление функции одной переменной
  140. Матрицы
  141. Линейные и евклидовы пространства
  142. Линейные отображения
  143. Дифференциальные теоремы о среднем
  144. Теория устойчивости дифференциальных уравнений
  145. Функции комплексного переменного
  146. Преобразование Лапласа
  147. Теории поля
  148. Операционное исчисление
  149. Системы координат
  150. Рациональная функция
  151. Интегральное исчисление
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат