Для связи в whatsapp +905441085890

Бином Ньютона — математическая формула с примером решения и объяснением

Произведение биномов, отличающихся только вторыми членами. Обыкновенным умножением находим:
(x+α) (x+b)=x²+ax+bx+ab=x²+(a+b) x+ab;
(x+a) (x+b) (x+c) =
[x²+(a+b) x+ab] (x+c) =
= x³+(a+b) x2+abx+cx²+(ac+bc) x+abc=
= x³ + (a+b+c) x²+(ab+ac+bc) x+abc.

Подобно этому найдём:
(x+a) (х+b) (х+с) (x+d) = x+(a +b+c+d) x³+
+ (ab+ac+ ad+bc+bd+cd) x²+(abc+abd+acd+bcd) x+abcd.

Рассматривая эти произведения, замечаем, что все они составлены по одному и тому же закону, а именно:

Произведение составляет многочлен, расположенный по убывающим степеням буквы х.

Показатель первого члена равен числу перемножаемых биномов; показатели при х в следующих членах убывают на 1; последний член не содержит х (содержит его в нулевой степени).

Коэффициент первого члена есть 1; коэффициент второго члена есть сумма всех вторых членов перемножаемых биномов; коэффициент третьего члена есть сумма всех произведений вторых членов, взятых по два; коэффициент четвёртого члена есть сумма всех произведений вторых членов, взятых по три. Последний член есть произведение всех вторых членов.

Докажем, что этот закон применим к произведению какого угодно числа биномов. Для этого предварительно убедимся, что если он верен для произведения m биномов:
(x+a) (x+b) (х+с) … (x+k),
то при этом предположении будет верен и для произведения (m+1) биномов:
(x+a) (x+b) (x+c) . .. (x+k) (х+l).

Итак, допустим, что верно следующее равенство:
(x+α) (x+b) (х+с)… (x+k) =Бином Ньютона
где для краткости мы положим:
Бином Ньютона

Умножим обе части допущенного равенства на бином x+l:
Бином Ньютона

Рассматривая это новое произведение, убеждаемся, что оно подчиняется такому же закону, какой мы предположили верным для m биномов. Действительно, во-первых, этому закону следуют показатели буквы х; во-вторых, ему же следуют и коэффициенты, так как коэффициент второго члена S+l есть сумма всех вторых членов перемножаемых биномов, включая сюда и l; коэффициент третьего члена S₂+lS₁ есть сумма парных произведений всех вторых членов, включая сюда и l, и т. д.; наконец, Бином Ньютона есть произведение всех вторых членов: abc… kl.

Мы видели, что закон этот верен для произведения двух, трёх и четырёх биномов; следовательно, по доказанному теперь, он должен быть верен и для произведения 4+1, т. е. для произведения пяти биномов, если же он верен для произведения пяти биномов, то он верен и для произведения 5+1, т. е. для произведения шести биномов, и т. д.

Изложенное рассуждение представляет так называемое „доказательство от m к m+1“. Оно называется также „математической индукцией» (или „совершенной индукцией»). Заметим, что в предыдущих главах этой книги неоднократно представлялся случай применить доказательство от m к m + 1 . Мы этого не делали только ради простоты изложения.

Формула бинома Ньютона

Предположим, что в доказанном нами равенстве
Бином Ньютона
все вторые члены биномов одинаковы, т. е. что a=b=c= … =k. Тогда левая часть будет степень бинома Бином Ньютона. Посмотрим, во что обратятся коэффициенты S₁, S₂, …, Бином Ньютона.

Коэффициент S₁, равный a+b+c+ … +k, обратится в та. Коэффициент S₂, равный ab+ac+ad+ …. обратится в число α², повторённое столько раз, сколько можно составить сочетаний из m элементов по 2, т. е. обратится в Бином Ньютона. Коэффициент S₃, равный abc+abd+…, обратится в число а³, повторённое столько раз, сколько можно составить сочетаний из т элементов по 3, т. е. Бином Ньютона и т. д. Наконец, коэффициент Бином Ньютона, равный abc...k, обратится в Бином Ньютона. Таким образом, мы получим:
Бином Ньютона
Бином Ньютона

Это равенство известно как формула бинома Ньютона, причём многочлен, стоящий в правой части формулы, называется разложением бинома. Рассмотрим особенности этого многочлена.

Свойства формулы бинома Ньютона

Из этих свойств мы укажем следующие 10:

1) Показатели буквы х уменьшаются на 1 от первого члена к последнему, причём в первом члене показатель х равен показателю степени бинома, а в последнем он есть 0; наоборот, показатели буквы а увеличиваются на 1 от первого члена к последнему, причём в первом члене показатель при а есть 0; а в последнем он равен показателю степени бинома. Вследствие этого сумма показателей при х и а в каждом члене одна и та же, а именно: она равна показателю степени бинома.

2) Число всех членов разложения есть m+1, так как разложение содержит все степени а от 0 до m включительно.

3) Коэффициенты равны: у первого члена — единице, у второго члена — показателю степени бинома, у третьего члена — числу сочетаний из m элементов по 2, у четвёртого члена — числу сочетаний из m элементов по 3; вообще коэффициент (n+1)-ro члена есть число сочетаний из m элементов по n. Наконец, коэффициент последнего члена равен числу сочетаний из т элементов по m, т. е. 1.

Заметим, что эти коэффициенты называются биномиальными.

4) Обозначая каждый член разложения буквой T с цифрой внизу, указывающей номер места этого члена в разложении, т. е. первый член T₁, второй член T₂ и т. д., мы можем написать:
Бином Ньютона

Эта формула выражает общий член разложения, так как из неё мы можем получить все члены (кроме первого), подставляя на место n числа: 1, 2, 3,…. m.

5) Коэффициент первого члена от начала разложения равен единице, коэффициент первого члена от конца тоже равен единице. Коэффициент второго члена от начала есть m, т. е. Бином Ньютона; коэффициент второго члена от конца есть Бином Ньютона; но так как Бином Ньютона , то эти коэффициенты одинаковы. Коэффициент третьего члена от начала есть Бином Ньютона, а третьего члена от конца есть Бином Ньютона; но Бином Ньютона, поэтому и эти коэффициенты одинаковы и т. д. Значит:

Коэффициенты членов, одинаково удалённых от концов разложения, равны между собой.

6) Рассматривая биномиальные коэффициенты:
Бином Ньютона
мы замечаем, что при переходе от одного коэффициента к следующему числители умножаются на числа, всё меньшие и меньшие (на m—1, на m — 2, на m — 3 и т. д.), а знаменатели умножаются на числа, всё большие и большие (на 2, на 3, на 4 и т. д.). Вследствие этого коэффициенты сначала возрастают (пока множители в числителе остаются большими соответственных множителей в знаменателе), а затем убывают. Так как коэффициенты членов, равно отстоящих от концов разложения, одинаковы, то наибольший коэффициент должен находиться посередине разложения. При этом, если число всех членов разложения нечётное (что бывает при чётном показателе бинома), то посередине будет один член с наибольшим коэффициентом; если же число всех членов чётное (что бывает при нечётном показателе бинома), то посередине должны быть два члена с одинаковыми наибольшими коэффициентами. Например:
(х+α)⁴=x⁴+4αx³+6α²x²+4α³x+α⁴;
(x+α)⁵=x⁵+5αx⁴+10α²x3+10α³x²+5α⁴x+α⁵∙

7) Из сравнения двух рядом стоящих членов:
Бином Ньютона
Бином Ньютона
заключаем, что:

Для получения коэффициента следующего члена достаточно умножить коэффициент предыдущего члена на показатель буквы х в этом члене и разделить на число членов, предшествующих определяемому.

Пользуясь этим свойством, можно сразу писать, например, (x+a)⁷=x⁷+7ax⁶+…

Теперь берём 7, умножаем его на 6 и делим на 2, получаем 21: (x+a)⁷=x⁷+7ax⁶+21a²x⁵+… .

Теперь берём 21, умножаем на 5 и делим на 3, получаем 35:
(x+a)⁷ =х⁷+7ax⁶+21a²x⁵+35a³x⁴+….

Теперь уже выписаны члены до середины ряда, остальные получим, основываясь на свойстве пятом:
(х+а)⁷ =х⁷-7αx⁶+21α²x⁵+35α³x⁴+35α⁴x³+21α⁵x²+7α⁶x+α⁷.

8) Сумма всех биномиальных коэффициентов равна Бином Ньютона. Действительно, положив в формуле бинома x=a=1, получим:
Бином Ньютона

Например, сумма коэффициентов в разложении (х+a)⁷ равна
1+7+21+35+35 +21+7+1 = 128=2⁷.

9) Заменив в формуле бинома а на — а, получим:
Бином Ньютона
т. е.
Бином Ньютона
следовательно, знаки + и — чередуются.

10) Если в последнем равенстве положим x=α =1, то найдём:
Бином Ньютона

Сумма биномиальных коэффициентов, стоящих на нечётных местах, равна сумме биномиальных коэффициентов, стоящих на чётных местах.

Применение формулы бинома к многочлену

Формула бинома Ньютона позволяет возвышать в степень многочлен. Так:
(α+ b+c)⁴ = [(а+b)+с]⁴= (a+b)⁴+4c (а+b)³+6c² (а+b)²+4c³ (a+b)+c⁴.

Разложив (a+b)⁴, (a+b)³, (а+b)², окончательно получим:
(a+b+с)⁴=a⁴+4a³b+ 6a²b²+ 4ab³+ b⁴ +4a³c+12a²bc+
+12ab²c+4b³c+6a²c²+12abc²+6b²c²+ 4ac³ + 4bc³+с⁴.

Вывод формулы бинома ньютона

Очевидно, что

Бином Ньютона

Возникает вопрос, будет ли закономерность, наблюдаемая в этих формулах, обладать общностью, т. е. будет ли справедливой формула

Бином Ньютона

при всяком натуральном значении n?

Воспользуемся методом полной индукции. Допустим, что формула верна для произвольно взятого натурального числа р, т. е. предположим справедливым следующее равенство:

Бином Ньютона

Умножим обе части этого предполагаемого равенства на Бином Ньютона

Тогда получим:

Бином Ньютона

Пользуясь формулой

Бином Ньютона

и приняв во внимание, что

Бином Ньютона

получим окончательно:

Бином Ньютона

Из предположения, что формула верна при Бином Ньютона мы пришли к тому, что формула оказалась верной и при Бином Ньютона Но поскольку, кроме того, формула верна при Бином Ньютона то она должна быть верна и при любом натуральном значении n.

Теперь легко получить разложение и для Бином Ньютона

Действительно,

Бином Ньютона

или

Бином Ньютона

Последняя формула и называется формулой бинома Ньютона. Ее правая часть называется разложением степени бинома.

Числа Бином Ньютона называются биномиальными коэффициентами.

Свойства разложения бинома

В разложении бинома содержится членов на один больше, чем показатель степени бинома.

Все члены разложения имеют относительно букв а и b одно и то же измерение, равное показателю степени бинома. (Измерением одночлена относительно букв а и b называется сумма показателей степеней этих букв, входящих в этот одночлен.)

Поскольку все члены разложения имеют одинаковое измерение относительно букв а и b, то это разложение является однородным многочленом относительно букв а и b (см. стр. 450).

В разложении показатель степени буквы а последовательно понижается на единицу, начиная с показателя n, а показатель степени буквы b последовательно повышается на единицу, начиная с показателя, равного нулю.

Член разложения Бином Ньютона является Бином Ньютона членом разложения и обозначается символом Бином Ньютона

Формула

Бином Ньютона

называется формулой общего члена разложения, так как, давая букве k целые значения от 0 до n, мы можем получить из нее любой член разложения.

Теперь напишем разложение для выражения Бином Ньютона

Бином Ньютона

Здесь

Бином Ньютона

Свойства биномиальных коэффициентов

1. Биномиальные коэффициенты, равноудаленные от начала и конца разложения, равны между собой. Действительно, по первому свойству числа сочетаний имеем:

Бином Ньютона

2. Сумма биномиальных коэффициентов равна числу 2, возведенному в степень, равную показателю степени бинома.

Доказательство:

Положим, в формуле бинома

Бином Ньютона

Тогда получим:

Бином Ньютона

или

Бином Ньютона

3. Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме, биномиальных коэффициентов, стоящих на нечетных местах.

Доказательство:

Полагая в тождестве

Бином Ньютона

получим:

Бином Ньютона

Перенеся все отрицательные члены в левую часть, получим:

Бином Ньютона

что и требовалось доказать.

Если вместо биномиальных коэффициентов Бином НьютонаБином Ньютона подставить их значения, то формула бином Ньютона примет вид:

Бином Ньютона

Формулу бинома Ньютона принято записывать ради краткости в следующем символическом виде:

Бином Ньютона

или

Бином Ньютона

Читателю может показаться непонятным, почему столь элементарная формула

Бином Ньютона

где n — целое положительное число, носит имя великого ученого Ньютона, тем более что эта формула была известна до Ньютона. Например, ее знал Аль-Каши (XV век) и она встречается в трудах Паскаля. Объясняется это тем, что именно Ньютоном была обобщена эта формула для любого действительного показателя.

Ньютон впервые показал, что выражение

Бином Ньютона

где Бином Ньютона и Бином Ньютона — любое действительное число, равняется сумме следующего сходящегося, ряда:

Бином Ньютона

Например, если Бином Ньютона то

Бином Ньютона

Арифметический треугольник, или треугольник паскаля

Написанная ниже таблица

Бином Ньютона

называется треугольником Паскаля *.

По боковым сторонам этой таблицы стоят единицы, внутри же стоят числа, получающиеся сложением двух соответствующих чисел предыдущей строки. Например, число 21 в 8-й строке получается сложением стоящих над ним чисел 6 и 15.

Бином Ньютона строка этой таблицы дает биномиальные коэффициенты разложения n-й степени бинома. Например:

Бином Ньютона

и так далее.

Треугольник Паскаля получается из следующей таблицы:

Бином Ньютона

в силу того, что

Бином Ньютона

(см. стр. 662).

Треугольник Паскаля приведен в книге Паскаля «Трактат об арифметическом треугольнике», изданной после его смерти в 1665 году.

Примеры с решением на Бином Ньютона

1. В разложении Бином Ньютона коэффициент третьего члена на 44 больше коэффициента второго члена. Найти свободный член, т. е. член разложения, не зависящий от x (членом, не зависящим от х, будет тот, который содержит х в нулевой степени).

Решение:

Бином Ньютона Отсюда Бином Ньютона

Бином Ньютона

Приравняв показатель степени буквы х к нулю, получим:

Бином Ньютона Отсюда Бином Ньютона

Искомым свободным членом будет четвертый, и он будет равен Бином Ньютона т. е. 165.

2. Сколько рациональных членов содержится в разложении

Бином Ньютона

Решение:

Бином Ньютона

Для рациональности члена разложения необходимо, чтобы число k было кратно четырем. Но тогда Бином Ньютона будет числом четным и Бином Ньютона будет числом рациональным.

Число k может принимать целые значения 0, 1, 2….. 100. Среди этих чисел кратными четырем будут

Бином Ньютона

Пользуясь формулой Бином Ньютона получим: Бином НьютонаБином Ньютона или Бином Ньютона Следовательно, в разложении Бином Ньютона рациональных членов будет 26.

3. Доказать, что значение выражения

Бином Ньютона

где n — натуральное число, делится на 9.

Доказательство:

Бином Ньютона

Каждое слагаемое последней суммы делится на 9, следовательно, и вся эта сумма, т. е. значение выражения Бином Ньютона делится на 9, что и требовалось доказать.

Дополнение к Бином Ньютону

Бином Ньютона

Смотрите также:

Суммирование степеней целых чисел. Центр тяжести.
Разложения Тейлора. Двойное суммирование. Правило знаков Декарта.

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат