Оглавление:
Правило Лопиталя
Теорема 8.1. Пусть
1) функции определены и непрерывны в проколотой окрестности ;
2) существуют конечные производные ;
3) ;
4) .
Тогда если существует . то существует и имеет место равенство
Доказательство.
Доопределим функции в точке , полагая .
Тогда функции непрерывны в точке . Используя теорему Коши (теорема 7.3), получим
где точка с будет удовлетворять условиям или .
Если , поэтому, согласно условию теоремы,
Теорема 8.1 формулирует правило раскрытия неопределенности типа .
Замечание 8.1. Если производные удовлетворяют тем же требованиям, что и сами функции , то правило Лопиталя можно применять повторно. При этом получаем
Пример 8.1.
Найти предел .
Решение:
Ответ: .
Пример 8.2.
Найти предел .
Решение:
Ответ: 1.
Пример 8.3.
Найти предел ;
Решение:
Ответ: 2.
Теорема 8.2*. Пусть
1) функции определены и непрерывны в проколотой окрестности ;
2) существуют конечные производные ;
3) ;
4)
Тогда, если существует , то существует и имеет место равенство
Теорема 8.2 формулирует правило раскрытия неопределенности типа
Замечание 8.2. Правило Лопиталя справедливо и в случаях .
Пример 8.4.
Найти предел .
Решение:
Ответ: 0.
Пример 8.5.
Найти предел .
Решение:
Ответ: 0.
Пример 8.6.
Найти предел .
Решение:
Полученный предел не существует, так как при функция не стремится ни к какому предельному значению, а колеблется между 0 и 2. Правило Лопиталя не дает результатов.
Рассмотрим другой подход к вычислению предела.
Ответ: 1.
Заметим, что правило Лопиталя дает также возможность раскрыть неопределенности типа предварительно приведя их к виду .
Пример 8.7.
Найти предел .
Решение:
Ответ: 0.
Пример 8.8.
Найти предел
Решение:
Ответ: 0.
Пример 8.9.
Найти предел .
Решение:
Ответ: .
Пример 8.10.
Найти предел .
Решение:
Ответ: 1.
Эта лекция взята со страницы лекций по предмету математический анализ:
Возможно вам будут полезны эти страницы: