Оглавление:
Теория пределов. Непрерывность
Задание: Вычисление пределов с помощью замечательных пределов, раскрытие неопределенностей.
Целы формирование умения вычислять пределы функций, раскрывая неопределенности и используя замечательные пределы.
Задание для самостоятельной внеаудиторной работы:
10.1. Выучите определение предела функции в точке. Выясните, когда при вычислении пределов функции в точке возникает неопределенность вида
и в чем заключается техника ее раскрытия.
10.2. Вычислите предел функции в точке:

10.3. Выучите определение предела функции на бесконечности. Выясните, когда при вычислении пределов функции возникает неопределенность вида
и в чем заключается техника ее раскрытия.
10.4. Вычислите предел функции на бесконечности:

10.5. Запомните, какие пределы называются замечательными и проанализируйте, как они используются для вычисления пределов.
10.6. Вычислите предел функции с помощью замечательных пределов:

10.7. Вычислите предел функции:

10.8. Выясните, при каком значении параметра
будет равен -1; 0.
Методические указания по выполнению работы:
При решении задач необходимо знание следующего теоретического материала:
1. Предел функции в точке. Вычисление пределов путем раскрытия неопределенности вида
.
Число
называется пределом функции
при
, стремящемся к
(или в точке
), если для любого наперед заданного
существует такое
, что для всех
, удовлетворяющих условиям
, имеет место неравенство:
.
Если
есть предел функции
при
, то пишут:
.
При вычислении предела функции в точке удобно использовать следующую технику:
1. Если под знаком предела стоит многочлен, то предел вычисляется простой подстановкой.
Пример 1.
Вычислите:
.
Решение:
Подставим в многочлен вместо
значение -1, тогда

Ответ:
.
2. Если под знаком предела стоит отношение двух многочленов
, то проверяем, обращается ли при подстановке
знаменатель в ноль. Если не обращается, то предел вычисляется простой подстановкой.
Если при подстановке
знаменатель обращается в ноль, то необходимо использовать дополнительные приемы.
Если
, то имеем неопределенность вида
. В этом случае предел
можно вычислить разложением многочленов
и
на множители, используя формулы сокращенного умножения и формулу разложения квадратного трехчлена на множители:
, где
и
— корни уравнения
.
Если разложение выполнено верно, то в числителе и знаменателе дроби должны получиться одинаковые множители, которые следует сократить. После сокращения предел вычисляется простой подстановкой.
Пример 2.
Вычислите
.
Решение:
Проверим, какие значения будут принимать числитель и знаменатель при подстановке вместо
значения 3:
. Получили неопределенность вида
.
Разложим числитель на множители по формуле разложения квадратного трехчлена. Составим уравнение
и найдем его корни:

или
.
Тогда числитель можно представить в виде произведения двух множителей:

Знаменатель
разложим по формуле разности квадратов:
.
Вернемся к исходному пределу:

Ответ:
.
3. Если под знаком предела стоит дробь вида
, включающая иррациональную функцию (функцию, содержащую корень), то домножаем числитель и знаменатель дроби на выражение, сопряженное иррациональному.
Пример 3.
Вычислите
.
Решение:
Поскольку при подстановке в числитель и знаменатель вместо
значение 0, получаем неопределенность вида
, домножим числитель и знаменатель дроби на выражение
, сопряженное знаменателю. Получим:

В знаменателе дроби воспользуемся формулой разности квадратов:

Вынесем в знаменателе
за скобки
и сократим дробь на
:
.
Видим, что при подстановке
числитель и знаменатель не обращаются в 0, следовательно, теперь предел вычисляется простой подстановкой:

Ответ:
.
2. Предел функции на бесконечности. Вычисление пределов путем раскрытия неопределенности вида
.
Число
называется пределом функции
при
, если для любого наперед заданного
существует такое
, что для всех
имеет место неравенство:
.
Если
есть предел функции
при
, то пишут:
.
Для нахождения пределов функций на бесконечности часто используют два основных предела:
и
, где
— константа.
При вычислении предела дроби при
возникает неопределенность вида
. Техника ее раскрытия заключается в том, что каждое слагаемое числителя и знаменателя нужно разделить на
в наивысшей степени. Возможны три случая:
1) наивысшая степень числителя совпадает с наивысшей степенью знаменателя:
Пример 4.
Вычислите
.
Решение:
Разделим каждое слагаемое числителя и знаменателя на
. Получим:

Каждое слагаемое
стремится к 0 при
, тогда

Ответ:
.
Итак, если наивысшая степень числителя совпадает с наивысшей степенью знаменателя, то в пределе получается число, отличное от нуля.
Пример 5.
Вычислите
.
Решение:
Разделим каждое слагаемое числителя и знаменателя на
. Получим:

Ответ:
.
Таким образом, если наивысшая степень числителя больше наивысшей степени знаменателя, то в пределе получается бесконечность.
3) наивысшая степень числителя меньше наивысшей степени знаменателя:
Пример 6.
Вычислите
.
Решение:
Разделим каждое слагаемое числителя и знаменателя на
Получим:

Ответ: 
Таким образом, если наивысшая степень числителя меньше наивысшей степени знаменателя, то в пределе получается ноль.
3. Замечательные пределы. Вычисление пределов с помощью замечательных.
Вычисление пределов функции можно осуществлять с помощью замечательных пределов:
— первый замечательный предел;
— второй замечательный предел.
Пример 7.
Вычислите
.
Решение:
Поскольку под знаком синуса стоит угол
, домножим числитель и знаменатель дроби на 3, чтобы выражение под знаком синуса и выражение в знаменателе стали равны:
.
Вынесем число 3 за знак предела:
.
Применив первый замечательный предел, получим, что
.
Ответ:
.
Пример 8.
Вычислите
.
Решение:
Постараемся преобразовать выражение под знаком предела таким образом, чтобы прийти ко второму замечательному пределу. Необходимо, чтобы числитель дроби
был равен 1. Для этого разделим числитель и знаменатель данной дроби на 3; получим дробь вида:
. Теперь постараемся преобразовать показатель степени
таким образом, чтобы в нем можно было выделить множитель
. Для этого
домножаем на 2 и 3 и делим на 2 и 3:

Применив к выражению в скобках второй замечательный предел, получим, что

Ответ:
.
На этой странице вы сможете посмотреть все остальные темы готовых контрольных работ по высшей математике:
Готовые контрольные работы по высшей математике
Обратите внимание на похожие контрольные работы возможно они вам будут полезны:

