Оглавление:
В пространстве с заданной декартовой системой координат однозначное расположение плоскости можно задать различными способами, соответственно существуют различные уравнения плоскости в пространстве.
1. Уравнение плоскости, проходящей через три заданные точки
Здесь — текущие координаты точки плоскости.
2. Уравнение плоскости, проходящей через заданную точку перпендикулярно заданному вектору :
3. Если в уравнении (3.12) раскрыть скобки и обозначить свободный член через , получим общее уравнение плоскости:
Если в общем уравнении (3.13) один из коэффициентов , , равен нулю, то плоскость проходит параллельно соответствующей оси. Если два коэффициента из , , равны нулю, плоскость параллельна одной из координатной плоскости. Например, плоскость проходит параллельно оси , плоскость проходит параллельно координатной плоскости через точку на оси .
Коэффициенты , , в общем уравнении являются одновременно компонентами вектора, перпендикулярного плоскости.
4. Разделив уравнение (3.13) на (-), получим уравнение плоскости в отрезках:
Здесь — отрезки, отсекаемые плоскостью на осях координат. Например, плоскость
пересекает оси координат в точках .
Расстояние от точки до плоскости , заданной уравнением (3.13), определяется по формуле:
Две плоскости перпендикулярны (параллельны) друг другу, если перпендикулярны (параллельны) их векторы нормали. Поэтому, если даны две плоскости
то условие перпендикулярности плоскостей:
условие параллельности плоскостей:
Пример выполнения задания
Пример:
Даны четыре точки .
Требуется: а) написать уравнение плоскости, проходящей через точки ; б) преобразовать полученное уравнение плоскости в уравнение плоскости в отрезках и построить её; в) найти расстояние от точки до плоскости .
Решение:
а) Подставим координаты точек в уравнение (3.11):
Раскрыв определитель, получим:
Разделим на (-4) и получим окончательное общее уравнение искомой плоскости :
б) Перенеся свободный член в правую часть и разделив на него уравнение, получим уравнение плоскости в отрезках:
Откладываем отрезки на осях соответственно и строим плоскость (см. рисунок 3.1).
в) Расстояние от точки до плоскости найдём по формуле (3.15):
(ед. длины).
Эта лекция взята с этой страницы, там вы найдёте все темы лекций по высшей математике для студентов 1 курса:
Возможно вам будут полезны эти страницы:
Смешанное произведение трёх векторов: определение и пример с решением |
Уравнения прямой линии на плоскости |
Эллипс, гипербола, парабола |
Предел бесконечной числовой последовательности |