Оглавление:
Задание: Определение промежутков выпуклости, вогнутости графика функций, нахождение точек перегиба.
Цель: формирование умения находить промежутки выпуклости, вогнутости графика функции и его точки перегиба.
Задание для самостоятельной внеаудиторной работы:
16.1. Выучите определения вогнутого и выпуклого на интервале графика функции, точки перегиба. Запомните критерий выпуклости (вогнутости) графика функции.
16.2. Выясните, в чем заключается достаточное условие существования точек перегиба. Детально изучите и постарайтесь освоить алгоритм, позволяющий находить промежутки выпуклости (вогнутости) графика функции и точки перегиба.
16.3. Найдите промежутки выпуклости и вогнутости, точки перегиба графика функции:
16.4. Найдите промежутки выпуклости и вогнутости, точки перегиба графика функции .
16.5. Определите, при каком значении график функции будет вогнутым на области определения функции.
Методические указания по выполнению работы:
Для успешного решения задач необходимо знание следующего теоретического материала:
График функции называется вогнутым на интервале , если он расположен выше любой касательной к графику функции на данном интервале.
График функции называется выпуклым на интервале , если он расположен ниже любой касательной к графику функции на данном интервале.
Точка графика непрерывной функции, в которой меняется характер выпуклости, называется точкой перегиба.
Функция может иметь несколько интервалов выпуклости и вогнутости, несколько точек перегиба. При определении промежутков выпуклости и вогнутости в качестве ответа выбирают интервал значений: точки перегиба не относят ни к промежуткам выпуклости, ни к промежуткам вогнутости.
Так, график функции на рис.1, является выпуклым на промежутках и ; вогнутым на . График функции имеет две точки перегиба: и .
Критерий выпуклости-вогнутости функции: если функция имеет положительную вторую производную, то график функции на интервале вогнутый;
- если функция имеет отрицательную вторую производную, то график функции на интервале выпуклый.
Критерий выпуклости-вогнутости функции удобно представляется в виде схемы:
Таким образом, исследовать функцию на выпуклость-вогнутость означает найти те интервалы области определения, в которых вторая производная сохраняет свой знак.
Критическими точками функции второго рода называются те точки, в которых вторая производная равна нулю или не существует. Только критические точки могут быть точками перегиба. Для их нахождения используется следующая теорема:
Теорема (достаточное условие существования точек перегиба). Если вторая производная при переходе через точку меняет знак, го точка графика с абсциссой является точкой перегиба.
При исследовании функции на выпуклость-вогнутость и точки перегиба удобно использовать следующий алгоритм:
- Найдите область определения функции.
- Найдите первую производную функции .
- Найдите вторую производную функции .
- Определите критические точки второго рода ( или не существует).
- На числовой оси отметьте критические точки второго рода и определите знаки второй производной на каждом из получившихся интервалов.
- Найдите интервалы выпуклости-вогнутости графика функции, используя соответствующие критерии; выпишите абсциссы точек перегиба (если они есть) и найдите значение функции в этих точках.
Пример 1.
Найдите промежутки выпуклости и вогнутости, точки перегиба графика функции .
Решение:
1. Данная функция определена на множестве .
2. Найдем первую производную функции: .
3. Найдем вторую производную функции: .
4. Определим критические точки второго рода .
5. На числовой оси отметим критическую точку . Она разбивает область определения функции на два интервала и . Расставим знаки второй производной функции на каждом из полученных интервалов:
при ;
при .
6. Согласно критерию выпуклости-вогнутости график функции выпуклый при , вогнутый при .
Значение — абсцисса точки перегиба. Вычислим значение функции при :
. Итак, точка с координатами (3;2) — точка перегиба.
Ответ: график функции выпуклый при ,
вогнутый при ; (3;2) — точка перегиба.
Пример 2.
Найдите промежутки выпуклости и вогнутости, точки перегиба графика функции .
Решение:
1. Данная функция определена в том случае, когда знаменатель отличен от нуля: .
2. Найдем первую производную функции:
3. Найдем вторую производную функции:
Вынесем в числителе за скобки:
4. Определим критические точки второго рода: не может быть равна нулю, поскольку числитель дроби .
не существует, если — критическая точка второго рода.
5. На числовой оси отметим критическую точку выколотой точкой, поскольку в этой точке функция не определена. Эта точка разбивает область определения функции на два интервала и . Расставим знаки второй производной функции на каждом из полученных интервалов:
при
при
6. Согласно критерию выпуклости-вогнутости график функции является выпуклым при , вогнутым при .
Точка с абсциссой не может быть точкой перегиба, т.к. в этой точке функция не существует (терпит разрыв).
Ответ: график функции выпуклый при , вогнутый при .
На этой странице вы сможете посмотреть все остальные темы готовых контрольных работ по высшей математике:
Готовые контрольные работы по высшей математике
Обратите внимание на похожие контрольные работы возможно они вам будут полезны: