Для связи в whatsapp +905441085890

Рождение и развитие теории Галуа в XIX — первой половине XX в.

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

  1. Рождение аналитической геометрии и ее роль в развитии математики в XVII в.
  2. Нестандартный анализ: предыстория и история его рождения
  3. Качественная теория дифференциальных уравнений в XIX — начале XX в.
  4. Аналитическая теория дифференциальных уравнений XIX—XX вв. и 21-я проблема Гильберта.
  5. Проблема решения алгебраических уравнений в радикалах от евклидовых «Начал» до Н.Г. Абеля.
  6. Метод многогранника от И. Ньютона до конца XX в.
  7. Открытие неевклидовой геометрии и ее значение для развития математики и математического естествознания.
  8. Трансцендентные числа: предыстория, развитие теории в XIX — первой половине XX в.
  9. Место и специфика истории технических наук как направления в истории науки и техники.
  10. Основные периоды в истории развития технических знаний

Введение

Эварист Галуа (фр. Évariste Galois ; 25 октября 1811, Бур-ля-Рен, О-де-Сен, Франция — 31 мая 1832, Париж, Франция) — выдающийся французский математик, основатель современной высшей алгебры. Радикальный революционер-республиканец, он был застрелен на дуэли при неоднозначных обстоятельствах в возрасте двадцати лет.

 Биография

Галуа родился в Бур-ля-Рене (Bourg-la-Reine ), предместье к югу от Парижа[1]. Он был вторым среди троих детей Николя-Габриэля Галуа и Аделаиды-Мари Демант. Отец был убеждённым республиканцем, и когда Эваристу исполнилось 4 года, отец стал мэром города, сохранив этот пост при реставрации монархии и далее, вплоть до 1829 года.

В возрасте 12 лет Эварист поступил в Королевский коллеж Луи-ле-Гран. В годы учёбы Галуа стал свидетелем попытки заговора учеников, придерживающихся республиканских взглядов, против руководства колледжа из-за слухов о возможном переформировании колледжа в иезуитское училище (коим он был до этого). Такое переформирование предположительно могло упрочить позиции сторонников Людовика XVIII. Заговор был раскрыт и более ста учащихся колледжа были с позором исключены.

Лишь с 16 лет Галуа начал читать серьёзные математические сочинения. В числе прочих ему попался мемуар Нильса Абеля о решении уравнений произвольной степени. По мнению преподавателей, именно математика превратила его из послушного ученика в выдающегося. Тема захватила Галуа, он начал собственные исследования и уже в 17 лет опубликовал свою первую работу в журнале «Annales de Gergonne ». Однако талант Галуа не способствовал его признанию, так как его решения часто превосходили уровень понимания преподавателей, прояснению его умозаключений не способствовало также то, что он не трудился ясно излагать их на бумаге и часто опускал очевидные для него вещи.

В 1828—1829 годах на Галуа обрушивается череда несчастий: Галуа дважды, с разрывом в год, проваливает экзамен в Политехническую школу (École Polytechnique). В первый раз краткость решений и отсутствие пояснений на устном экзамене привели к тому, что Галуа не был принят. Через год, на устном экзамене он оказался в той же ситуации, и в отчаянии от непонимания экзаменатора швырнул в него тряпкой. Поступление в политехническую школу было важно для него и потому, что она была центром республиканцев.

Следующая неудача была в том, что одобренная Коши работа в двух частях отправленная ему на рецензию, затем была утеряна Коши и не попала в Парижскую Академию на конкурс математических работ. В 1829 году священник иезуит, вновь прибывший в родной город Галуа, доводит отца Эвариста до самоубийства написанием от его имени нескольких злобных памфлетов (за Николя-Габриэль Галуа закрепилась слава остроумного писателя сатирических памфлетов). Не выдержав позора отец Галуа не увидел иного выхода кроме самоубийства.

В 1829 году Галуа всё же удаётся поступить в Высшую нормальную школу, в которой проучился всего год и был исключён за участие в политических выступлениях республиканского направления.

1830: июльская революция во Франции. Король Карл X свергнут, но левым не удалось добиться своего — провозгласить республику, и дело закончилось заменой короля на более либерального Луи Филиппа Орлеанского.

Роковое невезение продолжается. Галуа посылает Фурье, для участия в конкурсе на приз Академии, мемуар о своих открытиях — но спустя несколько дней Фурье неожиданно умирает, так и не успев им заняться. В оставшихся после его смерти бумагах рукопись не была обнаружена. Приз получает Абель. Всё же Галуа удаётся опубликовать 3 статьи с изложением основ своей теории. Статья, посланная Пуассону, отвергнута со следующей резолюцией:

Во всяком случае, мы сделали все от нас зависящее, чтобы понять доказательство г-на Галуа. Его рассуждения не обладают ни достаточной ясностью, ни достаточной полнотой для того, чтобы мы могли судить об их точности, поэтому мы не в состоянии дать о них представление в этом докладе.

Галуа продолжает участвовать в выступлениях республиканцев, ведёт себя вызывающе. Дважды был заключён в тюрьму Сент-Пелажи. Первый раз его арестовали 10 мая 1831 года. 15 июня в суде присяжных департамента Сены начался разбор дела. Благодаря стараниям адвоката Дюпона, Галуа был оправдан и без дальнейших проволочек отпущен на свободу. Второй раз Галуа просидел в Сент-Пелажи с 14 июля 1831 года до 16 марта 1832 года, когда его заболевшего перевели в больницу, помещавшуюся в доме №86 по улице Лурсин. Есть сведения, что Галуа оставался здесь еще некоторое время после того как 29 апреля кончился срок его заключения. Эта больница — его последнее известное место жительства.

Научные достижения

За 20 лет жизни Галуа успел сделать открытия, ставящие его на уровень крупнейших математиков XIX века. Решая задачи по теории алгебраических уравнений, он заложил основы современной алгебры, вышел на такие фундаментальные понятия, как группа (Галуа первым использовал этот термин, активно изучая симметрические группы) и поле (конечные поля носят название полей Галуа).

Галуа исследовал старую проблему, решение которой с XVI века не давалось лучшим математикам: найти общее решение уравнения произвольной степени, то есть выразить его корни через коэффициенты, используя только арифметические действия и радикалы.

Нильс Абель несколькими годами ранее доказал, что для уравнений степени 5 и выше решение «в радикалах» невозможно; однако Галуа продвинулся намного дальше. Он нашёл необходимое и достаточное условие для того, чтобы корни уравнения допускали выражение через радикалы. Но наиболее ценным был даже не этот результат, а те методы, с помощью которых Галуа удалось его получить.

Работы Галуа, немногочисленные и написанные сжато, поначалу остались непоняты современниками. Огюст Шевалье и младший брат Галуа, Альфред, послали последние работы Галуа Гауссу и Якоби, но ответа не дождались. Только в 1843 году открытия Галуа заинтересовали Лиувилля, который опубликовал и прокомментировал их (1846).

Открытия Галуа произвели огромное впечатление и положили начало новому направлению — теории абстрактных алгебраических структур. Следующие 20 лет Кэли и Жордан развивали и обобщали идеи Галуа, которые совершенно преобразили облик всей математики.

Координатный метод в геометрии

Вспомним, что Декарт прославил свое имя в математике одной блестящей идеей: нало придать наглядный смысл всем алгебраическим уравнениям и их решениям! Из этой идеи вырос координатный метод в геометрии. Евклидова плоскость и пространство подчинились числам, и курс элементарной геометрии превратился в один из разделов новой алгебры. Наилучший учебник по новой “аналитической” геометрии написал в 1794 году безработный академик Адриен Лежандр для студентов Высшей Нормальной школы.

Дело в том, что годом раньше французские революционеры распустили Парижскую Академию Наук, как безнадежно монархическое учреждение. Но после свержения Робеспьера самые здравомыслящие из революционеров поняли, что народное просвещение отменить нельзя. Кто-то должен учить будущих учителей — и вот для них была открыта Высшая Нормальная школа. Адриен Лежандр стал одним из первых ее профессоров. До рождения Эвариста Галуа оставалось 16 лет.

Следующий рывок вперед сделал через два года молодой Карл Гаусс. Он перевел привычную технику геометрических построений на новый язык алгебраических действий с комплексными числами. Оказалось, что суть дела — в комплексных корнях разных многочленов. Добраться до такого корня с помощью линейки и циркуля можно лишь в том случае, если он достижим посредством цепочки квадратных уравнений. Поэтому, например, правильный 7-угольник нельзя построить в рамках “греческой” геометрии. Но в рамках алгебры он вполне доступен: его вершины суть комплексные корни уравнения Х.. — 1 = 0.

Достигнув этого рубежа, Гаусс остановился, не задавая следующий вопрос: какие задачи остаются неразрешимыми в рамках алгебры комплексных чисел? Например, всякое ли уравнение-многочлен разрешимо в радикалах — то есть, можно ли добраться до его корней с помощью арифметических действий и извлечения корня? Или: всякая ли точка на числовой оси является корнем многочлена с целыми коэффициентами? Оба эти вопроса очевидны, важны и интересны — но Гаусс уже исчерпал свой порыв в этой области, и для новых подвигов понадобились новые богатыри.

Первый из них — норвежец Нильс Абель — заявил о себе в 1824 году (когда Эварист Галуа был уже школьником). Абелю удалось доказать, что большинство уравнений-многочленов степени, большей 4, НЕ РАЗРЕШИМО в радикалах. Значит, итальянцы Кардано и Феррари, решив в 16 веке уравнения степеней 3 и 4, достигли предела в этой области — хотя сами не подозревали о таком чуде. Следующий вопрос возник сам собою: как узнать по виду уравнения, разрешимо ли оно в радикалах? Абель начал заниматься этой проблемой — но не успел достичь цели, ибо умер от воспаления легких в 1829 году. Через год Парижская Академия Наук присудила Абелю посмертную премию за его открытия. В том же году Эварист Галуа вышел на передний край математической науки.

Его взлет начался в 16 лет, когда в руки школьнику попал учебник геометрии Лежандра. Эварист прочел эту книгу взахлеб, как роман — за двое суток. Он был потрясен: вот как рассуждают творцы современной математики! И он все это понимает; значит, он тоже может и должен делать математические открытия! Надо раздобыть другие книги Лежандра, чтобы узнать: что в математике уже сделано, а какие задачи остались на его долю?

Эварист про книги Лежандра

 Эварист прочел эту книгу взахлеб, как роман — за двое суток. Он был потрясен: вот как рассуждают творцы современной математики! И он все это понимает; значит, он тоже может и должен делать математические открытия! Надо раздобыть другие книги Лежандра, чтобы узнать: что в математике уже сделано, а какие задачи остались на его долю?

Сказано — сделано: в руках Галуа оказался солидный двухтомник “Теория чисел”, где Лежандр изложил открытия Гаусса, наряду со своими находками. Тут Галуа вновь ощутил восхитительный резонанс рассуждений автора со своими мыслями и понял, чего ему хочется больше всего. Надо понять самому и объяснить другим, почему уравнения высших степеней не решаются в радикалах!

Гаусс изобрел в этой области замечательную конструкцию. Можно присоединить к полю коэффициентов многочлена его корни, и получить новое поле — расширение прежнего поля. Эту процедуру можно повторять много раз; в итоге возникает нечто вроде растущего кристалла, оси и грани которого обладают особой симметрией. И возможно, что от этой симметрии зависит разрешимость исходного уравнения!

Такова была дерзкая догадка Галуа; она оказалась верна, поэтому автора считают гением. Но не только поэтому! Еще важнее то, что Галуа сумел довести свою гипотезу до строгой теоремы. Для этого ему пришлось создать первую математическую теорию произвольных симметрий — так называемую Теорию Групп.

Именно Галуа ввел в науку такие понятия, как группа и подгруппа, изоморфизм и гомоморфизм групп. Он заметил, что ядро гомомоморфизма (то есть, прообраз единицы в группе) не может быть какой угодно подгруппой. Это должна быть НОРМАЛЬНАЯ подгруппа, переходящая сама в себя при внутренних изоморфизмах группы. Только при этом условии факторизация группы по ее подгруппе порождает новую группу, — иначе получается обычное множество, без алгебраических операций среди его элементов.

Если мы хотим, чтобы все элементы большого поля F получались из элементов меньшего поля F1 с помощью арифметических действий и извлечения корней, то факторгруппа симметрий поля F по симметриям поля F1 должна не только существовать, но и быть ЦИКЛИЧЕСКОЙ. При этом группа всех симметрий поля F разложится в конечную цепочку нормальных подгрупп с циклическими факторгруппами. Таким свойством обладают группы перестановок 2, 3 или 4 символов. Поэтому все корни многочленов этих степеней выражаются через коэффициенты многочленов с помощью радикальных формул. Напротив, группы перестановок 5 или большего числа символов НЕ ИМЕЮТ цепочки подгрупп с циклическими факторгруппами. Оттого соответствующие уравнения не разрешимы в радикалах.

Такова суть теории Галуа, созданной им в 19 лет. Даже в наши дни она выглядит сложно, для неподготовленного человека. Каково же было современникам Галуа — даже самым маститым академикам? Не удивительно, что при жизни Галуа (а жить ему оставалось два года!) никто не оценил его открытия по достоинству, хотя Эварист щедро рассылал свои тексты разным парижским математикам. Увы, — Лежандр был уже глубокий старик, и не мог понимать новинки даже в родной ему области алгебры…

Заключение

Значение работ Галуа состоит в том, что в них в полной мере были раскрыты новые глубинные математические закономерности теории уравнений. После освоения открытий Галуа вид и цели самой алгебры существенно изменились, исчезла теория уравнений — появилась теория полей, теория групп, теория Галуа. Ранняя смерть Галуа была невозместимой утратой для науки. На заполнение пробелов, понимание и улучшение работ Галуа понадобилось еще несколько десятков лет. Усилиями Кэли, Серре, Жордана и других открытия Галуа были превращены в теорию Галуа. В 1870 г. монографии Жордана «Трактат о подстановках и алгебраических уравнениях» представило эту теорию в систематическом изложении, понятном для всех. С этого момента теория Галуа стала элементом математического образования и фундаментом для новых математических исследований.

Список литературы

1. Бородин А.И, Бугай А.С, «Биографический словарь деятелей в области математики», Киев, «Радянська школа», 1979 г.

2. Богомолов А.Н., «Математики, механики»,Киев,»Наукова думка»,1983 г.

3. Саймон Сингх с. 201-216

4. Стиллвелл Д. Математика и её история. — Москва-Ижевск: Институт компьютерных исследований, 2004, стр. 361-365.

5. Инфельд, Л. Эварист Галуа. Избранник богов. М.: Молодая гвардия (Жизнь замечательных людей), 1965, С. 259—260.