Для связи в whatsapp +905441085890

Рождение аналитической геометрии и ее роль в развитии математики в XVII в.

Предмет: Философия

Тип работы: Реферат

У вас нет времени или вам не удаётся понять эту тему? Напишите мне в whatsapp, согласуем сроки и я вам помогу!

На странице рефераты по философии вы найдете много готовых тем для рефератов по предмету «Философия».

Дополнительные готовые рефераты на темы:

  1. Знаменитые задачи древности (удвоение куба, трисекция угла, квадратура круга) и их значение в развитии математики
  2. Апории Зенона в свете математики XIX—XX вв.
  3. Аксиоматический метод со времен Античности до работ Д. Гильберта
  4. Рождение математического анализа в трудах И. Ньютона
  5. Рождение математического анализа в трудах Г. Лейбница
  6. Нестандартный анализ: предыстория и история его рождения
  7. Качественная теория дифференциальных уравнений в XIX — начале XX в.
  8. Аналитическая теория дифференциальных уравнений XIX—XX вв. и 21-я проблема Гильберта.
  9. Проблема решения алгебраических уравнений в радикалах от евклидовых «Начал» до Н.Г. Абеля.
  10. Рождение и развитие теории Галуа в XIX — первой половине XX в.

Введение

Данное учебно-методическое пособие по курсу «Аналитическая геометрия» разработано на основе опыта преподавания данной дисциплины и современных методик обучения. Аналитическая геометрия – раздел геометрии, в котором геометрические фигуры и их свойства исследуются средствами алгебры на основе метода координат. В основе этого метода лежит так называемый метод координат, впервые применённый Декартом. Каждому геометрическому соотношению этот метод ставит в соответствие некоторое уравнение, связывающее координаты фигуры или тела. Идея координат и попытки записи уравнения кривой встречались в работах древних греков. Архимед и Аполлоний Пергский в своих сочинениях на примерах конических сечений пытались создать уравнения кривых. Однако из-за невысокого уровня древнегреческой алгебры и слабого интереса к кривым, отличным от прямой и окружности результаты не получили дальнейшего развития.

В Европе в XIV веке Николай Орезмский первым использовал координатное изображение для функции, зависящей от времени, назвав координаты, по аналогии с географическими, долготой и широтой. Возникновение метода координат тесно связано с бурным развитием астрономии, механики и техники в XVI веке. В1637 год Фермав сочинении «Введение в изучение плоских и телесных мест» рассматривает (в символике Виета) уравнения различных кривых 2-го порядка впрямоугольных координатах. Однако данное сочинение Ферма широкой известностью не пользовалось. Гораздо большее влияние имела «Геометрия»Декарта, вышедшая в том же1637 году, которая независимо и гораздо более полно развивала те же идеи. Декарт поместил в «Геометрии» множество примеров, иллюстрирующих огромную мощь нового метода, и получил немало результатов, неизвестных ранее.

Алгебраические методы в геометрии

Применение алгебры в геометрии имело к началу XVII в. долгую историю. Еще древние вавилоняне решали многие задачи на прямоугольные треугольники, выражая искомые отрезки, как корни численных квадратных уравнений; аналогичные приемы употреблялись впоследствии неоднократно. В классической! Греции важным средством геометрического исследования, в частности конических сечений, служила геометрическая алгебра, в которой место вычислений занимали построения отрезков.

Бурные успехи символической и числовой алгебры в XVI в. явились основой гораздо более обширных приложений алгебраического метода в геометрии, приведших к созданию новой аналитической геометрии. Первоначально работы в этом направлении не выходили за пределы традиционных постановок и решений вопросов, иногда довольно сложных.

Большое число таких задач было рассмотрено Виетом, за которым последовали и другие, например Марин Геталдич (Гетальди, 1566—1627), уроженец югославского города Дубровник (Рагуза), в то время бывшего самостоятельной республикой. Ученик Хр. Клавия и хороший знаток греческих авторов, Гетальди испытал особенно сильное влияние Виета, с которым познакомился в бытность в Париже. В «Собрании различных задач» (Variorum problematum collectio, Veneliae, 1607) и посмертно изданном труде «О математическом анализе и синтезе» (De resolutione et compositione mathematica, Romae, 1630) Гетальди средствами алгебры Виета решает разнообразные задачи на деление отрезков, построение треугольников и так называемые вставки (ср. т. I, стр. 84); по большей части его задачи выражаются уравнениями первой или второй степени относительно искомого неизвестного отрезка.

В некоторых случаях применяется чисто геометрическое решение. Упомянем античную задачу о вставке между продолжением стороны квадрата и ближайшей перпендикулярной стороной отрезка данной длины, продолжение которого проходит через вершину квадрата, не лежащую на названных сторонах. Гетальди отнес задачу к тем, которые не относятся к алгебре (sub algebram non cadunt), и решил ее геометрически.

Данная задача привлекла внимание и других ученых. Жирар (1629) выразил ее уравнением четвертой степени и показал, как связан выбор знаков перед радикалами, входящими в его корни, с положением частей искомого отрезка. Декарт (1637) рассмотрел ее с целью привести пример уравнения четвертой степени, распадающегося на два квадратных (коэффициенты которых, между прочим, квадратично иррациональны относительно исходных коэффициентов). Попутно Декарт указал, как от более или менее удачного выбора неизвестной зависит сравнительная простота уравнения. Эти соображения Декарта подробнее развиты во «Всеобщей арифметике» Ньютона. Оригинальное решение принадлежит еще Гюйгенсу.

Алгебраическим решением геометрических задач занимались, как видно, очень многие. К уже названным можно добавить, например, имя английского алгебраиста Вильяма Отреда (1574—1660), на книге которого, озаглавленной, подобно одному из сочинений ал-Каши, «Ключ математики» (Clavis mathematicae, Londini, 1631) В первом издаиии этот весьма распространенный в XVII в. труд назывался «Основы арифметики в числах и видах» (Arithmeticae in numeris et speciebus institutio)., отразилось несомненное влияние «Собрания различных задач» Гетальди.

Аналитическая геометрия

Описанная алгебраическая трактовка вопросов геометрии подготовляла почву для создания аналитической геометрии, предметом которой является уже нс только нахождение отдельных отрезков, выражаемых корнями уравнений с одним неизвестным, но изучение свойств различных геометрических образов, прежде всего алгебраических линий и поверхностей, выражаемых уравнениями с двумя или более неизвестными или координатами.

Координаты появились еще в древности, притом в различных формах, между собой непосредственно не связанных. С одной стороны, это были географические координаты, именовавшиеся долготой и широтой, причем положение пунктов земной поверхности, изображенной в виде прямоугольника, характеризовалось парой чисел. Сходными были астрономические координаты, служившие для определения положения светил на небесной сфере. Другой вид координат представляли собой отрезки, зависимости между которыми, так называемые симптомы (см. т. I, 130), выражали определяющие свойства этих кривых. В этом случае речь шла не о числовых координатах любых точек с отсчетом от фиксированного меридиана и параллели, а об отрезках диаметров и хорд, связанных с точками рассматриваемой фигуры.

Своеобразной разновидностью координат были отрезки широт и долгот в теории изменения форм Орема. Здесь не было ни числовых координат любых точек, ни «симптомов», выраженных средствами геометрической алгебры; словесно сформулированная зависимость между широтой и долготой формы изображалась плоской линией.

Координатные отрезки древнегреческой геометрии стали известны в Европе частью по арабским сочинениям, но главным образом по трудам Архимеда и особенно Аполлония. Параллельные хорды или полухорды, сопряженные некоторому диаметру, Аполлоний называл, если перевести с греческого, «по порядку проведенными линиями», а отрезки этого диаметра от его конца до хорды — «отсеченными на диаметре по порядку проведенными (линиями)» (на рис. 6 соответственно у и x).

В своем упоминавшемся ранее латинском издании «Конических сечений» (Венеция, 1566) Федориго Коммандино первые выражения передал оборотом ordinatim applicatae, т. е. «по порядку приложенные» (т. е. направленные) Еще в переводе арабского трактата Ибн ал-Хайсама о параболических зеркалах, сделанном в XII в., употребляется оборот linea secunduin ordinem, т. е. «линия по порядку». Н. Орем в середине XIV в. писал о перпендикулярно приложенных отрезках — perpendiculariter applicatae., а второе — quae ab ipsis ex diametro ad verticem abscinduntur, т. е. «которые отсекаются ими па диаметре от вершины».

Аналитическая геометрия Ферма

К разработке начал новой аналитической геометрии независимо друг от друга и одновременно приступили оба крупнейших французских математика XVII в.— Ферма и Декарт. Небольшое «Введение в изучение плоских и телесных мест» (Ad locos pianos et solidos isagoge) Ферма было написано несколько ранее 1637 г., но при жизни Ферма распространялось через Мерсепна и других только в рукописном виде. Напомним, что «плоские и телесные места» — термины греческой геометрии — означали прямые и окружности и соответственно эллипсы, параболы и гиперболы. Работа написана в обозначениях Виета с соблюдением однородности уравнений.

Изложив все это, Ферма писал: «Таким образом мы коротко и ясно изложили все, что оставили невыясненным древние относительно плоских и телесных мест» См. Р. Декарт. Геометрия, стр. 146.. На самом деле был сделан лишь первый шаг к созданию нового типа геометрии, которая, между прочим, получила свое нынешнее наименование лишь в самом конце XVIII в. Термин «аналитическая геометрия» в применении к любым геометрическим приложениям алгебры употреблялся в XVIII в. не раз. В более специальном смысле. совпадающем с общепринятыми в XIX в., его начал применять С. Ф. Лакруа, а первую книгу, озаглавленную «Начала аналитической геометрии» (Elements de geometric analytique. Paris, 1801), опубликовал профессор Политехнической школы Ж. Г. Гарнье (1766-1840).

«Введение» Ферма, долгое время остававшееся в рукописи, не нашло того широкого распространения, какое получила «Геометрия» Декарта, изданная в 1637 г. О влиянии «Введения» на Декарта не может быть речи. Мы говорили уже, что все основные идеи «всеобщей математики», как в алгебраической, так и в геометрической части, имелись у ее творца не позднее 1632 г.

Изложение аналитической геометрии у Декарта во многом отличается от данного Ферма. В одном оно уступает, ибо разбросано по всем трем книгам «Геометрии» и даже во второй из них, содержащей наиболее важные элементы новой дисциплины, не имеет систематического характера, как во «Введении». Но в других отношениях геометрия Декарта имела решительные преимущества. Не говоря уже о том, что Декарт применял более развитую символику, что его изложение было доступнее и богаче примерами, он выдвинул несколько общих идей и предложений, весьма существенных для последующего. Один из основных вопросов для Декарта заключался в следующем: какие линии служат предметом геометрии? Ответ определялся верой Декарта в то, что единственным общим методом математики является алгебраический. Сначала этот ответ формулируется в кинематических выражениях: геометрические линии — это те, которые «описаны непрерывным движением или же несколькими такими последовательными движениями. пз которых последующие вполне определяются им предшествующими.— ибо этим путем всегда можно точно узнать их меру» Р. Декарт. Геометрия, стр. 30. . Напротив, из геометрии, т. е. собственно всеобщей математики, исключаются механические линии, описываемые «двумя отдельными движениями, между которыми и существует никакого отношения, которое можно было бы точно измерить» Там же, стр. 30-31 . Примеры механических линий—спираль и квадратриса: в качестве примера геометрических приводятся кривые, описываемые некоторым шарнирным механизмом, число звеньев которого можно неопределенно увеличивать. Этот механизм, по идее сходный смезолабием предложенным Эратосфеном в III в. до н. э. для построения двух средних пропорциональных, Декарт изобрел между 1619 и 1621 гг.: в третьей части «Геометрии» показано, как можно с его помощью строить любое число средних пропорциональных между двумя данными отрезками

Кинематическое образование линий являлось отправным пунктом геометрии Декарта и применяется в ней неоднократно. Конечно, данная им при этом кинематическая характеристика геометрических линий как кривых, описываемых одним или несколькими непрерывными движениями, последовательно определяющими друг друга, не вполне отчетлива, так же как и заявление, что для проведения всех таких линий «нужно только то предположение, что две или несколько линий можно перемещать вдоль друг друга и что их пересечения образуют другие линии» Р. Декарт. Геометрия, стр. 30.. Но в этих утверждениях, по сути дела, Декарт предвосхитил уже упоминавшуюся важную теорему английского ученого А. Кемпе (1876), согласно которой посредством плоских шарнирных механизмов можно описать дуги любых алгебраических кривых и нельзя описать ни одной трансцендентной. Свой кинематический способ деления линий на геометрические и механические Декарт тотчас облекает в более ясную аналитическую форму и здесь же предлагает классификацию первых. «Все точки линий,— пишет он,— которые можно назвать геометрическими, т. е. которые подходят под какую-либо точную и определенную меру, обязательно находятся в некотором отношении ко всем точкам прямой линии, которое может быть выражено некоторым уравнением, одним и тем же для всех точек данной линии» Там же, стр. 33. В этом поистине замечательном по глубине месте своего сочинения Декарт вводит и метод прямолинейных координат и понятие об уравнении кривой, а вместе с тем понятие о функции как аналитическом выражении, составленном из «неопределенных» отрезков x и у. Несколько перед тем Декарт объяснил, как описывать кривую или, вернее, строить любое число ее точек, вычисляя значения х по данным значениям у,— первой координатой у него служила у.

Заключение

Большое место занимают в «Геометрии» исследование оптических овалов, рассматриваемых в биполярных координатах, и про­ведение нормалей. Вторая книга сочинения завершается краткими замечаниями о возможности распространения метода на про­странственные кривые посредством проектирования их точек на две вза­имно перпендикулярные плоскости и заявлением: «Я полагаю теперь, что ничего не пропустил из начал, необходимых для познания кривых линий».

Конечно, в этих словах Декарта, как и в приведенной выше авторской оценке «Введения» Ферма, было несомненное преувеличение. Но действи­тельно, перед геометрией раскрывались невиданно широкие перспективы. Историки науки немало спорили о том, имелась ли у Аполлония аналити­ческая геометрия и было ли творчество Ферма и Декарта в этой области новаторским. Ответ зависит от определения термина «аналитическая гео­метрия», который, как отмечалось в другой связи, понимается по-разному. Несомненно, что оба ученых чрезвычайно многим обязаны были древним и что в саму теорию конических сечений они не внесли каких-либо новых теорем, а также не построили ее в чисто аналитическом плане. И вместе с тем Декарт и Ферма закладывали фундамент поистине новой геометрии, хотя «симптомы» Аполлония и соответствовали буквенным уравнениям кривых второго порядка.

Дело в том, что, как правильно писал Г. Цейтен, «геометрическая форма, приданная методом древних самой алгебре, была причиной многочислен­ных комбинаций между средствами и объектом геометрического исследо­вания — комбинаций, которые должны были оставаться довольно чуж­дыми аналитической геометрии, в особенности поскольку последняя стре­милась превратить геометрические проблемы целиком в задачи исчисле­ния». И до тех пор, пока средством исследования оставалась геометри­ческая алгебра, синтетическое рассмотрение неизбежно переплеталось с аналитическим, а в глазах некоторых ученых являлось принципиально господствующим. Ньютон, завершая свой вывод теоремы о том, что место к четырем прямым есть коническое сечение, писал: «Такое решение, как приведенное выше, т. е. исполняемое не с помощью исчисления, но геометри­ческим построением, и изыскивалось древними». Между тем после Ферма и Декарта и благодаря им начинает развиваться чисто аналитический ме­тод исследования геометрических образов, в принципе не нуждающийся в обращении к геометрическим построениям и опирающийся лишь на ал­гебраическое исчисление. Такова общая, идейная сторона дела. К этому следует добавить, что новая алгебра давала средства изучения кривых любого порядка, первые примеры чего имеются уже у Декарта (такое применение геометрической алгебры было невозможно), что система коор­динат становилась свободной от связи с теми или иными исключительными точками и направлениями (например, диаметром и вершиной конического сечения), что приобретали право на существование отрицательные коор­динаты и т. д. Мы не говорим уже о том, что в новой геометрии впервые нашло явное выражение понятие о функции, заданной формулой.

В свете сказанного второстепенное значение имеют недостатки, при­сущие аналитической геометрии Декарта и Ферма, пользовавшегося к то­му же менее совершенной алгеброй Виета, например не разработанность вопроса об отрицательных координатах или отсутствие на большинстве чертежей второй оси, а также то обстоятельство, что оба они ограничились немногими примерами приложения нового метода.

Современники восприняли новую геометрию с энтузиазмом. Уже в ла­тинских изданиях «Геометрии» Декарта мы находим отдельные, заслу­живающие упоминания вещи.

Список литературы

  1. Юшкевич. Ю.А. «Леонард Эйлер». М. : Знание, 1982.
  2. Юшкевич А.П. «История математики в России». М.: Наука,1968 г.
  3. Вилейтнер Г.В. «История математики от Декарта до середины XIX столетия». М.: государственное издание, 1960
  4. Г.И. Глейзер « История математики в школе».М. «Просвищениу», 1982