Для связи в whatsapp +905441085890

Задача №160. Проверить прочность тяг, поддерживающих весьма жесткую балку, изгибом которой можно пренебречь.

Задача №160.

Проверить прочность тяг, поддерживающих весьма жесткую балку, изгибом которой можно пренебречь. Балка шарнирно укреплена в стене, как указано на рис. 10.18, а. Тяги одинакового поперечного сечения площадью выполнены из стали, допускаемое напряжение для которой задано: .

Решение:

Превратим балку в свободное тело. Для этого отбросим опоры и заменим их действие реакциями . Силы, действующие на балку, представляют собой систему параллельных сил, для которой можно составить два независимых уравнения равновесия:

Уравнений равновесия два, а неизвестных — три, следовательно, система один раз статически неопределима. Составим уравнение перемещений. Балка повернется вокруг точки на некоторый угол, не деформируясь, и примет некоторое наклонное положение (рис. 10.18, б).

Вертикальные перемещения шарниров и соответственно равны удлинениям тяг, вызванных действием на них растягивающих сил, равных и противоположно направленных реакциям и . Выразим удлинения стержней:

Из подобия треугольников и получим

Жесткость сечений тяг одинакова, поэтому

Подставим значения и и получим зависимость между реакциями и :

откуда

Подставив найденное выражение в уравнение моментов, получим = 19,5 кН, тогда = 28 кН. Более нагружена тяга . Найдем напряжения растяжения в ней:

что меньше допускаемого напряжения; значит, прочность тяг обеспечена.

Эта задача с решением взята со страницы решения задач по предмету «прикладная механика»:

Решение задач по прикладной механике

Возможно эти страницы вам будут полезны:

Задача №158. Жесткий брус (рис. 10.16, а), шарнирно закрепленный в точке , удерживается в равновесии с помощью стержней 1 и 2. В точке брус нагружен силой . Определить напряжения в поперечных сечениях обоих стержней, если , площади поперечных сечений соответственно.
Задача №159. Абсолютно жесткий брус (рис. 10.17, а) опирается на шарнирно неподвижную опору и прикреплен к двум стержням в точках и с помощью шарниров. Определить: а) нормальные силы, возникшие и стержнях; б) допускаемую нагрузку , приравняв большее из напряжений, возникшее в одном из стержней, допускаемому напряжению = 160 МПа.
Задача №161. Абсолютно жесткий брус (рис. 10.19) опирается на шарнирно неподвижную опору и прикреплен к двум стальным стержням при помощи шарниров.
Задача №162. Абсолютно жесткий брус (рис. 10.20) опирается на шарпирно неподвижную опору и прикреплен к двум стальным стержням при помощи шарниров.