Точка и прямая в плоскости
Из геометрии известны теоремы о принадлежности точки и прямой линии плоскости:
1-я теорема: точка принадлежит плоскости, если она принадлежит прямой линии, лежащей в этой плоскости.
2-я теорема: прямая линия принадлежит плоскости, если она проходит через две точки, лежащие в этой плоскости.
На рис. 3.2 показано применение этих теорем для построения горизонтальной проекции точки
лежащей в плоскости, заданной треугольником
. Для решения этой задачи требуется выполнить следующий графический алгоритм (графические действия):
1-е действие. Провести в заданной плоскости фронтальную проекцию вспомогательной прямой
через две точки этой плоскости — например, через точку
и заданную фронтальную проекцию точки
; эта прямая пересекает сторону
треугольника в точке
.
2-е действие. Провести горизонтальную проекцию вспомогательной прямой
через горизонтальные проекции точек
и
.
3-е действие. Построить по линии связи искомую горизонтальную проекцию точки
на горизонтальной проекции вспомогательной прямой
.
На рис. 3.3, а, б показано решение задачи, где требуется достроить горизонтальную проекцию четырехугольника 
Для решения задачи выполнены следующие графические построения:
- проведены проекции диагонали

- проведена фронтальная проекция диагонали

-определены проекции вспомогательной точки
, принадлежащей диагоналям
и 

-проведена через точки
и
горизонтальная проекция диагонали
, на которой должна лежать проекция вершины
;
- построена по линии связи горизонтальная проекция
вершины
по ее принадлежности прямой
;
-достроена горизонтальная проекция
четырехугольника
.
Прямые особого положения в плоскости. Горизонталь
и фронталь
плоскости
Прямые линии, лежащие в плоскости и параллельные фронтальной плоскости проекций
, называются фронталями —
.
Прямые линии, лежащие в плоскости и параллельные горизонтальной плоскости проекций
, называются горизонталями —
.
На рис. 3.4 показано построение в плоскости треугольника
проекций фронтали и горизонтали.
Поскольку фронталь плоскости
параллельна фронтальной плоскости проекций
, построение ее проекций следует начинать
с горизонтальной проекции фронтали
которая должна быть на чертеже параллельна оси
. Фронтальная проекция фронтали
строится по ее принадлежности заданной плоскости с помощью вспомогательной точки
.
Поскольку горизонталь плоскости
параллельна горизонтальной плоскости проекций
, построение ее проекций следует начинать с фронтальной проекции горизонтали
которая должна быть на чертеже параллельна оси
. Горизонтальная проекция горизонтали
строится по ее принадлежности заданной плоскости с помощью вспомогательной точки
.
Прямые линии, лежащие в плоскости и перпендикулярные горизонтали этой плоскости, называются линиями наибольшего наклона (ската) плоскости. Они определяют угол наклона плоскости к плоскости проекций
.
На рис. 3.5, а изображена линия наибольшего ската
в плоскости
, а на рис. 3.5, б — построение ее проекций на чертеже этой плоскости, заданной следами.

Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:
Начертательная геометрия для 1 курса
Возможно эти страницы вам будут полезны:
| Проекции плоскости |
| Взаимное положение двух прямых |
| Взаимное положение двух плоскостей, прямой линии и плоскости |
| Понятие о следах плоскости |

