Системой дифференциальных уравнений называется совокупность уравнений, в каждое из которых входит независимая переменная, искомые функции и их производные.
Решение системы, состоящей из нескольких уравнений с таким же числом неизвестных функций, можно привести к решению дифференциального уравнения с одной неизвестной функцией.
Нормальная система уравнений:
как правило, может быть заменена одним дифференциальным уравнением, порядок которого равен порядку системы.
Пример:
Найти общее решение системы уравнений
Решение:
Продифференцировав первое уравнение по , заменим производную ее выражением из второго уравнения: . Продифференцировав полученное уравнение еще раз, заменим производную ее выражением из третьего уравнения: . Подставляя в последнее уравнение и , окончательно получим . Решим это уравнение. Соответствующее ему характеристическое уравнение имеет корни . Следовательно, . Функции и в соответствии с соотношениями и после дифференцирования полученного для выражения имеют вид: и .
На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:
Высшая математика краткий курс лекций для заочников
Возможно вам будут полезны эти страницы: