Для связи в whatsapp +905441085890

Задача С6. Горизонтальная платформа равномерно вращается вокруг вертикальной оси, проходящей через ее центр. На расстоянии, равном трети радиуса платформы, отрывается от ее поверхности небольшое тело и скользит по ней без трения. Через сколько времени тело слетит с платформы, если до отрыва оно двигалось с ускорением 0,1 ? Радиус платформы 60 см.

Задача С6. Горизонтальная платформа равномерно вращается вокруг вертикальной оси, проходящей через ее центр. На расстоянии, равном трети радиуса платформы, отрывается от ее поверхности небольшое тело и скользит по ней без трения. Через сколько времени тело слетит с платформы, если до отрыва оно двигалось с ускорением 0,1 ? Радиус платформы 60 см.

Обозначим а ускорение тела, R — радиус платформы, t — время, через которое тело слетит с платформы с момента его отрыва, v — линейную скорость тела, S — путь, пройденный телом при скольжении.

Решение:

Чтобы легче представить движение тела по платформе, выполним чертеж. Посмотрим на
платформу сверху, и нарисуем круг, покажем его центр О и проведем горизонтальный радиус R.

Затем на расстоянии, равном трети радиуса от края платформы, изобразим тело в точке М в момент отрыва (рис. 47). Значит, в этот момент от тела до центра платформы расстояние составило две трети радиуса.

Теперь давайте думать. Нам известно ускорение тела а перед отрывом от поверхности платформы. Но платформа вращается равномерно, значит, это его центростремительное ускорение. В момент отрыва линейная скорость тела v направлена по касательной к окружности, по которой оно двигалось до отрыва. Радиус этой окружности составлял . А мы знаем формулу, связывающую линейную скорость с центростремительным ускорением. Применительно к нашей задаче она будет выглядеть так:

После отрыва тело станет двигаться к краю платформы без трения. Значит, это движение будет равномерным и прямолинейным со скоростью v. Тогда тело слетит с платформы в точке С, проделав путь S. Если этот путь разделить на линейную скорость тела, мы найдем искомое время t, через которое тело слетит с платформы:

Дальнейший ход решения ясен. Путь S находим из прямоугольного треугольника МСО по теореме Пифагора, а линейную скорость v — из выражения (1), и все это подставляем в равенство (2). Приступим. По теореме Пифагора

Теперь из (1) находим линейную скорость v:

Нам осталось подставить правые части равенств (3) и (4) в формулу (2), и задача в общем виде будет решена. Подставляем:

Задача в общем виде решена. Подставим числа и вычислим. 60 см = 0,6 м.

Ответ: t = 2,2 с.



Эта задача взята со страницы подробного решения задач по физике, там расположена теория и подробное решения задач по всем темам физики:

Задачи по физике с решением

Возможно вам будут полезны эти задачи:

Задача С4. Камень бросили вниз с начальной скоростью 2 м/с. Время его падения на землю равно 3 с. Чему равна средняя скорость падения камня на оставшейся до земли третьей части всей высоты его падения? Сопротивлением воздуха пренебречь.
Задача С5. Маленький мячик бросили с земли под углом 60° к горизонту со скоростью 5 м/с в вертикальную стену, расположенную на расстоянии 1,5 м от места бросания. Под каким углом к горизонту отскочит мячик после абсолютно упругого удара о стену? Сопротивлением воздуха пренебречь.
Задача С7. Свободно падающее без начальной скорости тело за первую секунду проходит некоторый путь, а последний такой же путь оно проходит за 0,4 с. С какой высоты упало тело?
Задача C8. Два автомобиля движутся co скоростями 36 км/ч и 54 км/ч под углом = 60° друг к другу. В некоторый момент времени один из них оказался в пункте М, а другой в тот же момент — в пункте N, расстояние между которыми S = 10 км.