Оглавление:
Уравнение годографа вектора скорости
- Уравнение движения декартовой точки известно. Получить уравнение годографа вектора скорости. На фиг. 9а показана траектория в момент времени и несколько векторов скорости в различные моменты времени в выбранном масштабе.
Регулярная прецессия гироскопа характеризуется собственным вращением и постоянной угловой скоростью прецессии, причем прецессия образуется вокруг оси в определенном направлении и под определенным углом. Людмила Фирмаль
На рисунке 9б показан годограф этого вектора скорости движения. Точка M (x, y, z) на траектории соответствует точке M (…, zj) на годографе вектора скорости. Согласно определению годографа, координаты точки Л / представляются проекцией вектора скорости на координатную ось OjXjjjjZi по формуле.
- Если ось координат годографа вектора скорости параллельна оси относительных координат с учетом точечного уравнения движения, Z T М / х, у, зл Рисунок 9 rX) = vx = x; v „t = vy = y; vZt = vz = z. Параметрическое уравнение годографа вектора скорости имеет вид: Xj = x; yt = y; zr = z. Удаление параметра t из этих уравнений дает уравнение годографа для вектора скорости в координатной форме.
При получении постоянной вращающейся траектории вместо вертикального приближения Asym, как описано выше, получается наклонная асимптота в том или ином направлении в зависимости от направления вращения. Людмила Фирмаль
Годограф вектора скорости обеспечивает визуальное представление скорости движущейся точки в различные моменты времени. Кроме того, ускорение параллельно касательной к годографу вектора скорости, поэтому можно определить направление вектора ускорения.
Смотрите также:
Задачи по теоретической механике
Задание движения и траектория | Ускорение точки в декартовых координатах |
Скорость в декартовых координатах | Естественный способ изучения движения |
Если вам потребуется помощь по теоретической механике вы всегда можете написать мне в whatsapp.