Оглавление:
Способ последовательного дифференцирования
Решение уравнения (65.2) ищем в виде ряда Тейлора:
при этом первые два коэффициента находим из начальных условий (65.3). Подставив в уравнение (65.2) значения , , , находим третий коэффициент: . Значения находим путем последовательного дифференцирования уравнения (65.2) по и вычисления производных при . Найденные значения производных (коэффициентов) подставляем в равенство (65.4). Ряд (65.4) представляет искомое частное решение уравнения (65.2) для тех значений , при которых он сходится. Частичная сумма этого ряда будет приближенным решением дифференциального уравнения (65.2).
Рассмотренный способ применим и для построения общего решения уравнения (65.2), если и рассматривать как произвольные постоянные.
Способ последовательного дифференцирования применим для решения дифференциальных уравнений любого порядка.
Пример №65.4.
Методом последовательного дифференцирования найти пять первых членов (отличных от нуля) разложения в ряд решения уравнения .
Решение:
Будем искать решение уравнения в виде
Здесь . Находим , подставив в исходное уравнение: . Для нахождения последующих коэффициентов дифференцируем заданное дифференциальное! уравнение:
При имеем:
Подставляя найденные значения производных в искомый ряд, получим:
На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:
Другие темы по высшей математике возможно вам они будут полезны:
Приближенное вычисление определенных интегралов |
Приближенное решение дифференциальных уравнений |
Способ неопределенных коэффициентов |
Тригонометрический ряд Фурье |