Оглавление:
Случайные составляющие коэффициентов регрессии
- Случайная составляющая коэффициента регрессии Коэффициент регрессии, рассчитанный методом наименьших квадратов, равен Это особая форма случайной величины, где свойство зависит от свойства Остаточный член уравнения. Это первая теоретическая демонстрация ки, и через контролируемые эксперименты.
- В частности, В чем смысл некоторых коэффициентов регрессии? Конкретные предположения об отдыхе. Всегда работайте с парными моделями рег при просмотре Rss, где у связано с х в следующих отношениях: >> = ct + px + w, (3.1) Оценить уравнение регрессии на основе n выборочных наблюдений Они. у = а + бх. (3.2) Также предположим, что x — неслучайный экзогенный переход.
Может быть изменено. Людмила Фирмаль
Другими словами, его значение во всех наблюдениях можно рассматривать как Это не имеет никакого отношения к зависимости, указанной ранее и исследованной. Во-первых, обратите внимание, что значение >> состоит из двух компонентов. Она 73 Есть неслучайный компонент (os + Px), это не имеет ничего общего Закон вероятности (а и р может быть неизвестен, но все же Постоянное значение), а также случайный компонент и.
Когда b рассчитывается по обычной формуле, оно становится следующим. , Cov (x,> 0 б включает в себя случайные компоненты. Cov (x, y) зависит от значений y и b у зависит от значения и. Когда случайные компоненты принимают разные значения в наблюдении Яхта, у значение отличается, поэтому значение отличается Cov (x, y) и b.
- Теоретически, b можно разложить на случайные и неслучайные компоненты Они есть. Используя соотношения (3.1) и правила / расчеты Вариации из раздела 1.2: Cov (x, y) = Cov (x, [a + px + u]) = Cov (x, a) + Cov (x, px) + Cov (x, u). (3.4) Согласно правилу ковариации 3, ковариация Cov (x, a) равна нулю.
Для вариационного правила 2 ковариация Cov (x, px) равна pCov (x, x). далее Cov (x, x) совпадает с Var (x). Таким образом, вы можете написать: Cov (x, y) = pVar (x) + Cov (x, и), Таким образом, Cov (x, y) = SOU (X, C) Var (x) P Var (x) * Следовательно, коэффициент регрессии b Выборка выражается как сумма двух слагаемых. 1) постоянный Ранг равен истинному значению коэффициента р.
2) Случайный синтез Зависит от Cov (x, и), который определяет отклонение коэффициента C б от константы р. Людмила Фирмаль
Точно так же вы можете показать, что имеет постоянный компонент, равный истинному значению а, и случайный Компонент, который зависит от случайных факторов. Обратите внимание, что коэффициенты на самом деле не могут быть разложены Компонент регрессии, потому что мы не знаем истинное значение а и р или факта Ценность и образец. Они заинтересованы в нас С этими допущениями вы можете получить информацию о теореме а и б химия.
Смотрите также:
Интерпретация уравнения регрессии | Эксперимент по методу Монте-Карло |
Качество оценки: коэффициент R2 | Предположения о случайном члене |