Оглавление:
Системы линейных однородных уравнений
Пусть дана система линейных однородных уравнений

Очевидно, что однородная система всегда совместна
, она имеет нулевое (тривиальное) решение
.
При каких условиях однородная система имеет и ненулевые решения?
Теорема 4.4. Для того, чтобы система однородных уравнений имела ненулевые решения, необходимо и достаточно, чтобы ранг
ее основной матрицы был меньше числа
неизвестных, т. е.
.
Необходимость.
Так как ранг не может превосходить размера матрицы, то, очевидно,
. Пусть
. Тогда один из миноров размера
отличен от нуля. Поэтому соответствующая система линейных уравнений имеет единственное решение:
. Значит, других, кроме тривиальных, решений нет. Итак, если есть нетривиальное решение, то
.
Достаточность.
Пусть
. Тогда однородная система, будучи совместной, является неопределенной. Значит, она имеет бесчисленное множество решений, т. е. имеет и ненулевые решения.
Пусть дана однородная система
линейных уравнений с
неизвестными

Теорема 4.5. Для того, чтобы однородная система
линейных уравнений с
неизвестными имела ненулевые решения, необходимо и достаточно, чтобы ее определитель
был равен нулю, т. е.
.
Если система имеет ненулевые решения, то
. Ибо при
система имеет только единственное, нулевое решение. Если же
, то ранг
основной матрицы системы меньше числа неизвестных, т. е.
. И, значит, система имеет бесконечное множество (ненулевых) решений.
Пример №4.6.
Решить систему

Решение:

Так как
, то система имеет бесчисленное множество решений. Найдем их

. Стало быть,
— общее решение.
Положив
, получаем одно частное решение:
. Положив
, получаем второе частное решение:
,
,
и т. д.
На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:
Другие темы по высшей математике возможно вам они будут полезны:
| Действия над матрицами |
| Элементарные преобразования матриц |
| Линейные операции над векторами |
| Проекция вектора на ось |

