Для связи в whatsapp +905441085890

Реферат на тему: Система счисления

У вас нет времени на реферат или вам не удаётся написать реферат? Напишите мне в whatsapp — согласуем сроки и я вам помогу!

В статье «Как научиться правильно писать реферат», я написала о правилах и советах написания лучших рефератов, прочитайте пожалуйста.

Собрала для вас похожие темы рефератов, посмотрите, почитайте:

  1. Реферат на тему: Источники права
  2. Реферат на тему: Инфаркт миокарда
  3. Реферат на тему: Мировые религии
  4. Реферат на тему: Гепатиты
Реферат на тему: Система счисления

Введение

На протяжении всей жизни мы сталкиваемся с числами и выполняем с ними арифметические операции. Это нас не удивляет. Мы принимаем это как факт. И откуда взялись цифры и результат? Что такое цифровая система? Где мы теперь с ними встретимся? Мне было очень интересно, поэтому я решил изучить этот предмет.

Эта тема интересна и для меня, так как двоичная система счисления в настоящее время стала очень важной в связи с ее использованием в электронных компьютерах. Численные системы с базами 8 и 16 используются в программировании различных процессов на компьютерах.

Я поставил перед собой цель: познакомиться с историей возникновения счетных и числовых систем, изучить числовые системы, используемые в вычислениях, позиционные и непозиционные числовые системы, а также арифметические действия в различных системах. В данной диссертации рассматриваются различные вычислительные системы.

История происхождения систем счисления

В древние времена людям приходилось рассчитывать на пальцы. Кроме пальцев, нужно было сосчитать много испытуемых, на счету было больше участников. Один считал единицы, второй — дюжины, третий — сотни. Очевидно, что такой расчет лег в основу принятой почти всеми народами системы вычислений, называемой десятичной системой. Расчет с базовой десяткой также применим к восточным славянам.

Там, где люди ходили босиком, их пальцы легко сосчитать до 20. Следы использования при подсчете до 20, например, во французском число 80 в буквальном переводе на русский звучит как «четырежды двадцать».

Были также распределены десятки аккаунтов, т.е. аккаунт, на котором использовалась система базы 12. Его происхождение связано с 12 фалангами на четырех пальцах (кроме большого). Даже сейчас некоторые пункты все еще считаются десятками. Столовые приборы состоят из полдюжины или дюжины комплектов.

В древнем Вавилоне, где математика была очень высоко развита, существовала очень сложная шестнадцатеричная система счисления. В настоящее время мы также используем эту систему. Например: 1 час=60 минут; 1 минута=60 секунд.

Самой старой из систем пальцев считается система с пятью пальцами. Эта система родилась и наиболее широко используется в Америке. Его происхождение восходит к эпохе, когда человек считал на пальцах одной руки. До недавнего времени некоторые племена сохранили пятипальцевую систему счисления в чистом виде.

Таким образом, все системы (пятикратные, двенадцатикратные, двадцати четырехкратные) соединены одним или другим способом счета пальцев ног (или рук и ног). Переход человека к счету пальцев привел к созданию различных систем подсчета. /1/

Численные системы, используемые в компьютерных технологиях

Система счисления — это система методов и правил, позволяющих установить взаимосогласованную связь между любым числом и его представлением в виде набора конечного числа символов. Многие символы, используемые для этого представления, называются цифрами.

В зависимости от того, как отображаются номера, они делятся на номера элементов и номера без элементов.

В непозиционных системах каждое число определяется как особая функция числовых значений набора чисел, представляющих это число. Числа в непозиционных системах счисления соответствуют некоторым фиксированным числам. Исторически сложилось так, что первыми вычислительными системами были непозиционные системы. Одним из главных недостатков является сложность написания больших чисел. Написание больших чисел в таких системах либо очень громоздко, либо системный алфавит чрезвычайно велик. Не-позиционные системы не используются в компьютерных технологиях.

Система счисления называется позиционной, когда одна и та же цифра может принимать различные числовые значения в зависимости от того, какая позиция цифры присутствует в наборе цифр, представляющих определенное число. Примером такой системы является арабская десятичная система счисления.

Фактические количества и количественные пропорции могут быть отображены различными способами. Основа системы нумерации элементов определяет их название. В вычислениях используются двоичная, восьмеричная, десятичная и шестнадцатеричная системы. Чтобы явно указать используемую систему счисления, заключим номер в скобки и укажем основу системы счисления в нижнем индексе. Каждая числовая позиция соответствует коэффициенту положения (цифра) или весу.

В настоящее время позиционные системы охлаждения встречаются чаще, чем непозиционные. Это связано с тем, что они позволяют писать большие числа относительно небольшим количеством символов. Еще более важным преимуществом систем позиционирования является простота и легкость арифметических операций по сравнению с числами, написанными в этих системах.

Преобразование чисел в десятичную систему осуществляется путем суммирования последовательностей степеней, основанных на системе, из которой переводится число. Затем вычисляется суммарное значение.

Как правило, вычислительные машины могут быть встроены в любую систему счисления. Но такая общая десятичная система крайне непрактична для нас. Если в механических вычислительных машинах с десятичной системой достаточно использовать только один элемент с множеством состояний (колесо с десятью зубцами), то в электронных машинах в цепях необходимо иметь 10 различных потенциалов.

Системы без номеров позиций

В настоящее время как позиционные, так и непозиционные системы расчета широко используются как в технологии, так и в быту.

В системах без вычисления позиции вес фигуры не зависит от позиции, которую она занимает в номере. Примером непозиционной системы счисления является римская система счисления. Он появился в Древнем Риме и существует по сей день. Традиционно используется для нумерации веков или для создания оглавления печатных произведений. Римские цифры можно найти на циферблатах часов.

В современной жизни наиболее показательным вариантом использования системы непозиционного учета являются денежные отношения. Мы сталкиваемся с ними каждый день. Никому не приходит в голову, что сумма, которую мы тратим на еду в магазине, может зависеть от того, в каком порядке мы поставим монеты на стол. Номинальная стоимость монеты не зависит от порядка, в котором она была взята из кошелька. Это классический пример непозиционной системы подсчета.

Это означает, что в настоящее время наиболее широко используется система позиционирования чисел.

Позиционные номера

В системах подсчета позиций вес каждой цифры изменяется в зависимости от ее положения в последовательности цифр, представляющих число. Каждая система позиций характеризуется своей базой. Основой системы нумерации элементов является количество различных символов или символов, используемых для представления цифр в этой системе. Любое натуральное число — два, три, четыре, шестнадцать и т.д. — может быть принято за основу. Следовательно, возможны бесконечные системы позиций: двоичные, состоящие из чисел 0 и 1; троичные, состоящие из чисел 0,1,2; и так далее.

Системы позиционирования удобны тем, что позволяют захватывать большие числа с небольшим количеством символов при выполнении простых и легко выполняемых арифметических операций.

Десятичная система счисления

Основой десятичной системы числа 10 является число 10, которое является единицей второй цифры, единицей третьей цифры будет 100 = 102, в общем случае единица каждой следующей цифры в десять раз больше, чем единица предыдущей цифры (предполагается, что выбор в качестве основы D. S. числа 10 связан с подсчетом на пальцах).

Д.С. С. основывается на принципе положения, т.е. один и тот же знак (число) имеет разное значение в зависимости от места его расположения. Поэтому только первые 10 цифр нуждаются в специальных символах, чтобы покрыть все цифры. Эти символы, которые обозначаются символами 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называются цифрами. Для захвата числа вы определяете, сколько единиц наибольшей цифры в нем содержится; остальное определяется как количество единиц наибольшей цифры, на единицу меньше, и т.д. Полученные цифры записываются бок о бок: например, 4×102 + 7×101 + 3×100 = 473.

При этом действия выполняются над числами в цифрах, т.е. отдельно над числами каждой цифры; если при этом числа складываются более чем до 10 (в случае сложения, умножения), то к следующей, более высокой цифре прибавляется одна или несколько единиц; в случае деления и вычитания, цифры должны быть разбиты на более мелкие.

Двоичная система счисления

Двоичная система счисления, система счисления, основанная на позиционном принципе записи чисел, с основой 2 Двоичная система счисления использует только два символа, цифры 0 и 1, и, как и в любой позиционной системе, значение цифры также зависит от ее позиции. Цифра 2 считается единицей 2-й цифры и записывается следующим образом: 10 (читать: «один, ноль»). Каждая единица следующей цифры в два раза больше предыдущей, т.е. эти единицы образуют последовательность цифр 2, 4, 8, 16, … , 2n.

По числу, записанному в десятичной системе в D. S., он поочередно делится на 2, а получившиеся остатки 0 и 1 записываются в порядке от последнего к первому, например: 43 = 21-2 +1; 21 = 10-2 +1; 10 = 5-2 +0; 5 = 2-2 +1; 2 = 1-2 + 0; 1 = 0-2 + 1; таким образом, двоичный вход числа 43 равен 101011. Таким образом, в EPS 101011 обозначает 1-20+1-21 + 0×22 +1×23 + 0-24 + 1-25.

В D. S. все арифметические операции особенно просты: например, таблица умножения сводится к равенству 1-1 = 1. Однако, запись в D.S. очень громоздка: например, число 9000 будет иметь 14 цифр.

В связи с тем, что двоичная система счисления использует только две цифры, она часто полезна в теоретических вопросах и для вычислений на ДЦК.

Восьмикратная числовая система

Восьмая система счисления — это система позиционных целых чисел с базой 8. Для представления чисел используются 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Число 1 в нижней цифре означает только одну, как и в десятичной системе счисления. То же число 1 в следующей цифре означает 8, следующие 64 и так далее. Число 100 (восьмеричное) не более 64 (десятичное). Например, чтобы перевести число 611 (восьмеричное) в двоичную систему, каждая цифра должна быть заменена соответствующей двоичной триадой (три цифры). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричной системе необходимо разделить его на триады справа налево и заменить каждую триаду соответствующим восьмеричным числом.

Восьмая система наиболее часто используется в областях, связанных с цифровым оборудованием. Например, восьмеричная система счисления служит самым простым языком общения человека с компьютером.

Шестнадцатеричная система счисления

Шестнадцатеричная система счисления (шестнадцатеричные числа) — Позиционная система счисления на целочисленном базисе 16 Запись чисел в восьмеричной системе счисления достаточно компактна, но еще более компактна в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцати десятичных цифр берутся обычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а в качестве остальных 6 цифр используются первые буквы латинского алфавита: A, B, C, D, E, F. Номер 1, написанный нижней цифрой, означает только один. Одна и та же цифра 1 в следующей — 16 (после запятой), следующая — 256 (после запятой) и т.д. Цифра F, записанная внизу цифры, означает 15 (десятичная).

Преобразование из шестнадцатеричной системы в двоичную и наоборот осуществляется таким же образом, как и для восьмеричной системы.

Шестнадцатеричная система счисления на сегодняшний день является самой популярной компактной программой записи двоичных чисел. Он широко использовался при разработке и проектировании цифровых технологий и, как восьмеричная система счисления, является простейшим языком для общения человека с компьютером.

Заключение

В соответствии с целью исследований в работе я ознакомился с историей зарождения исчисления и систем нотации, изучил системы нотации, используемые в компьютерной технике, позиционные и непозиционные системы нотации, а также арифметические действия в различных системах нотации.

После знакомства с компьютерными системами я узнал много нового и полезного, и считаю, что эта наука необходима для развития общества. Трудно представить мир без компьютеров. Это связано с тем, что именно бинарная система получила широкое распространение в различных областях техники, особенно в современных компьютерах и калькуляторах.

Система позиционирования номера состоит в использовании ограниченного числа цифр, но положение каждой цифры в номере обеспечивает значение (вес) этой цифры Положение цифры в числе называется цифрой в математическом языке.

Основой системы нумерации элементов является количество различных символов или символов (чисел), используемых для представления чисел в определенной системе.

Двоичная система счисления — наиболее широко используемая в компьютерах, так как одна цифра двоичного числа соответствует одному биту — минимальной единице информации в компьютерной технике

Для того, чтобы двоичные числа, которые достаточно сильно отличаются друг от друга по длине, более воспринимаемые и легче представляемые, сжимаются в восьмеричные и шестнадцатеричные числа.

В компьютерных технологиях все виды информации кодируются только числами, точнее числами, представленными в двоичной системе счисления — метод представления любого числа двумя символами (числами) по позиционному принципу.

Шестнадцатеричная система счисления широко используется как в низкоуровневом программировании, так и в компьютерной документации. Система восьмеричных чисел также иногда используется в компьютерах — по-видимому, чаще всего в определении прав в Unix-подобных операционных системах. Когда-то были компьютеры, которые использовали 24-битные и 36-битные слова. Шестизначная система счисления широко используется для подсчета минут и секунд. /4/. В целом, восьмеричная и шестнадцатеричная системы счисления являются самым простым языком общения человека с компьютером.

Я думаю, что у моей работы есть перспективы, потому что тема числовых систем достаточно сложна и обширна и может быть использована в реальной жизни. В моей работе собраны и систематизированы все материалы на эту тему.

Надеюсь, что мою работу будут применять не только учителя, но и студенты.

Список литературы

  1. ФоминС.В. Числовые системы, издание 1987 г. Главная редакцияфизико-математической литературыиздательства»Наука».
  2. ГашковС.Б. Вычислительные системы и их применение, 2014 . Публикация: ICNSM.
  3. КовриженкоГ.А. Числовые системы и двоичная арифметика, 1983.
  4. Базовыекомпьютерные системы/Хабрахабр.
  5. Фринландский университет. Вычислительная техника. М., 2003.
  6. Сидоров В.К. Численные системы // Наука и жизнь 2000. №2.
  7. Радюк Л. алгоритм трансляции в двоичную систему счисления и из нее // Наука и жизнь. 2003. №1.
  8. РасселДжесси — Система двоичных чисел, 2014-е издание: Книгаспроса.
  9. КолмогоровА.Н. Система чисел, 1973 Издатель «Академия наук СССР
  10. Алексеев Е.Г., Богатырев С.Д. Информатика. Мультимедийный электронный учебник.