Поверхности. Частные случаи гранных и кривых поверхностей. Геометрические тела многогранники
Геометрические тела — призма и пирамида
Многогранником называют геометрическое тело, поверхность которого ограничена плоскостями (гранями). Многогранник называют четырех-, пяти-, шестигранником и т. д. по количеству граней (включая основания), образующих его поверхность. На чертеже многогранник задают проекциями его граней и ребер (ребро — линия пересечения граней).
Рассмотрим призму и пирамиду — геометрические многогранники (тела), которые часто применяются при формообразовании различных деталей. Основанием призмы и пирамиды может быть любой многоугольник, по количеству сторон которого призму и пирамиду называют треугольной, четырехугольной и т. д. Такое название более соответствует изображению этих многогранников на чертеже, по которому определяется многоугольник основания, что позволяет создать в воображении соответствующий пространственный образ.
Призма как геометрическое тело имеет два параллельных основания, боковые грани и параллельные ребра. Призму называют правильной, если ее основаниями являются правильные многоугольники, вписанные в окружность. Призму называют прямой, если ее ребра перпендикулярны основанию, и наклонной, если ребра не перпендикулярны основанию.
Пирамида как геометрическое тело имеет одно основание и вершину, объединяющую все ее ребра. Пирамиду называют правильной, если ее основанием является правильный многоугольник, вписанный в окружность, а высота пирамиды проходит через центр этой окружности (то есть пирамида прямая).
Пирамида может быть наклонной, если основание высоты не лежит в центре окружности, в которую вписан многоугольник основания пирамиды. Пирамида со срезанной вершиной имеет два основания и называется усеченной.
Эта теория взята со страницы лекций для 1 курса по предмету «начертательная геометрия»:
Начертательная геометрия для 1 курса
Возможно эти страницы вам будут полезны:
Плоскопараллельное перемещение |
Способ вращения вокруг прямой уровня — горизонтальной или фронтальной прямой |
Построение проекций правильной пирамиды |
Построение проекций прямой правильной призмы |