Для связи в whatsapp +905441085890

По неподвижному круговому конусу с углом при вершине

Задача №18.

По неподвижному круговому конусу с углом при вершине, равным , катится без скольжения другой круговой конус с углом при вершине, равным , так, что ось симметрии последнего вращается вокруг оси симметрии не-подвижного конуса с постоянной угловой скоростью ooj. Определить абсолютную угловую скорость вращения подвижного конуса и найти аксоиды.

Решение:

Подвижный конус катится по неподвижному без проскальзывания так, что точки подвижного конуса, расположенные па общей образующей, имеют нулевые скорости. Поэтому мгновенная ось вращения совпадает с общей образующей обоих конусов. Во время движения мгновенная ось вращения перемещается как по поверхности неподвижного, так и по поверхности подвижного конуса. Поэтому аксоидами будут являться эти же самые поверхности конусов. Движение подвижного конуса теперь можно’представить как сложное, состоящее из вращения подвижной системы вокруг оси симметрии неподвижного конуса с переносной угловой скоростью (рис. 59) и относительного вращения подвижного конуса вокруг своей оси симметрии в подвижной системе координат. Зная направления абсолютной и относительной угловых скоростей подвижного конуса, а также величину и направление переносной угловой скорости, легко определить величину и направление абсолютной угловой скорости вращения конуса. Из треугольника скоростей будем иметь

Задача взята со страницы подробного решения задач по всем темам теоретической механики:

Решение задач по теоретической механике

Возможно эти дополнительные задачи вам будут полезны:

Задача №16. Прямолинейный стержень скользит своими концами по двум взаимно перпендикулярным направляющим и вращающимся вокруг точки с постоянной угловой скоростью . Угол наклона стержня к оси изменяется по закону. Определить абсолютную траекторию произвольной точки стержня.
Задача №17. Твердое тело совершает сложное движение, которое сводится к трем мгновенным вращениям вокруг трех осей, расположенных по двум сторонам и одной диагонали квадрата (как указано на рис. 55), причем угловые скорости соответственно пропорциональны длинам сторон и диагонали квадрата. Привести эту систему мгновенных вращений к одному мгновенному вращению и найти результирующую угловую скорость вращения.
Задача №19. Горизонтальные колеса I и II дифференциального механизма вращаются вокруг одной и той же вертикальной оси соответственно со скоростями и . Определить мгновенную угловую скорость вращения планетного колеса III, ось которого может свободно вращаться вокруг оси (рис. 60).
Задача №20. Пользуясь теоремой Кориолиса, определим ускорение материальной точки в полярной системе координат. Воспользуемся следующей схемой. Пусть движение -материальной точки по палочке «происходит то произвольному закону (рис. 63). Будем предполагать, что палочка вращается