Задача №1.
Нить закреплена одним концом в неподвижной точке и продета через кольцо , скользящее с постоянной скоростью по неподвижному стержню . Другой конец нити привязан к ползуну , скользящему по вертикальному стержню (рис. 1). Длина нити равна , расстояние . Определить скорость ползуна в зависимости от расстояния .
Решение:
Определим «положение точки координатой , определяющей расстояние точки от точки , а положение точки — координатой , определяющей ее расстояние от точки , Так как скорость точки задана, то производная
Для определения скорости точки нужно сначала установить тождественную зависимость координат и . Эта зависимость сразу следует из свойств . Обозначим через длину стержня . Тогда
Это соотношение остается справедливым в любой момент времени и может рассматриваться как тождество по времени. Дифференцируя это тождество, получим
откуда сразу следует
Здесь
Исключая у и имея в виду, что
получим
Задача взята со страницы подробного решения задач по всем темам теоретической механики:
Решение задач по теоретической механике
Возможно эти дополнительные задачи вам будут полезны:
Задача №2. Ползун приводится в движение вдоль стержня при помощи нити, продетой через неподвижное кольцо и наматывающейся на колесо, вращающееся с постоянной угловой скоростью (рис.-2). Определить скорость ползуна как функцию расстояния , если , а радиус колеса равен. |
Задача №3. Ползун приводится о движение посредством нити, наматывающейся на шкив радиуса . Определить скорость ползуна в зависимости от расстояния , если угловая скорость шкива равна (рис. 3). |
Задача №60. Прямолинейная трубка вращается в вертикальной плоскости вокруг горизонтальной оси с постоянной угловой скоростью . В трубке находится тяжелый шарик массы , прикрепленный к пружине, другой конец которой закреплен в точке . Найти закон движения шарика относительно трубки, считая упругую силу пружины пропорциональной ее удлинению с коэффициентом пропорциональности . В начальный момент трубка горизонтальна, а относительная скорость шарика равна нулю. Пружина в начальный момент имеет естественную длину . Рассмотреть случай. |
Задача №61. Окружность радиуса , плоскость которой вертикальна, вращается вокруг своего вертикального неподвижного диаметра с постоянной по величине угловой скоростью . По окружности может свободно скользить тяжелая материальная точка массы . Определить положение относительного равновесия материальной точки и найти период малых колебаний точки около положения устойчивого равновесия. |