Для связи в whatsapp +905441085890

Приложения тройного интеграла

Некоторые приложения тройного интеграла

Объем тела

Объем области приложения тройного интеграла выражается формулой приложения тройного интеграла или

приложения тройного интеграла — в декартовых координатах,

приложения тройного интеграла — в цилиндрических координатах,

приложения тройного интеграла — в сферических координатах.

Масса тела

Масса тела приложения тройного интеграла при заданной объемной плотности приложения тройного интеграла вычисляется с помощью тройного интеграла как

приложения тройного интеграла

где приложения тройного интеграла — объемная плотность распределения массы в точке приложения тройного интеграла.

Статические моменты

Моменты приложения тройного интеграла тела относительно координатных плоскостей приложения тройного интеграла вычисляются по формулам

приложения тройного интеграла

Центр тяжести тела

Координаты центра тяжести тела приложения тройного интеграла находятся по формулам

приложения тройного интеграла

Моменты инерции тела

Моменты инерции тела относительно координатных плоскостей вычисляются по формулам

приложения тройного интеграла

а моменты инерции относительно координатных осей:

приложения тройного интеграла

Пример №54.4.

Найти объем тела, ограниченного поверхностями приложения тройного интеграла и приложения тройного интеграла.

Решение:

Данное тело ограничено сверху плоскостью приложения тройного интеграла, снизу — параболоидом приложения тройного интеграла (см. рис. 231). Объем тела находим, используя цилиндрические координаты:

приложения тройного интеграла
приложения тройного интеграла

Пример №54.5.

Найти массу шара приложения тройного интеграла, если плотность в каждой точке шара обратно пропорциональна расстоянию от нее до начала координат (дополнительно: найти координаты центра тяжести).

Решение:

Уравнение сферы приложения тройного интеграла можно записать так: приложения тройного интеграла. Центр шара расположен в точке приложения тройного интеграла (см. рис. 232). Пусть приложения тройного интеграла — произвольная точка шара. Тогда, по условию, плотность приложения тройного интеграла определяется формулой

приложения тройного интеграла

где приложения тройного интеграла — коэффициент пропорциональности, приложения тройного интеграла — расстояние от точки приложения тройного интеграла до начала координат.

Итак, приложения тройного интеграла

Вычислять интеграл будем в сферических координатах. Уравнение сферы приложения тройного интеграла примет вид приложения тройного интеграла, т. е. приложения тройного интеграла.

Поэтому сферические координаты будут изменяться в следующих пределах: приложения тройного интеграла — от 0 до приложения тройного интеграла; приложения тройного интеграла — от 0 до приложения тройного интеграла; приложения тройного интеграла — от 0 до приложения тройного интеграла. Подынтегральная функция примет вид приложения тройного интеграла. Поэтому

приложения тройного интеграла

Из соображений симметрии следует, что приложения тройного интеграла; вычислив интеграл приложения тройного интеграла, найдем приложения тройного интеграла. Итак, координаты центра тяжести приложения тройного интеграла.

На этой странице размещён полный курс лекций с примерами решения по всем разделам высшей математики:

Другие темы по высшей математике возможно вам они будут полезны:

Вычисление тройного интеграла в декартовых координатах
Вычисление тройного интеграла в цилиндрических и сферических координатах
Вычисление криволинейного интеграла I рода
Некоторые приложения криволинейного интеграла I рода