Оглавление:
Алгебраические системы с тремя неизвестными
Для систем с тремя неизвестными определения понятий равносильности и следствия, а также свойства преобразований систем формулируются аналогично тому, как это было сделано для систем с двумя неизвестными.
Будем рассматривать системы вида
где , , являются либо многочленами от , , , либо могут быть представлены в виде отношения многочленов.
Сформулируем для систем уравнений с тремя неизвестными следующие утверждения, которые могут оказаться полезными при решении систем.
1° Если , где и —многочлены, то система (1) равносильна совокупности систем
и
и поэтому множество решений системы (1) в этом случае есть объединение множеств решений систем (2) и (3).
2°. Если уравнение
есть следствие системы (1), то система
равносильна системе (1), т. е. при добавлении к системе (1) еще одного уравнения (4), являющегося следствием этой системы, получается система, равносильная системе (1).
3°. Если уравнение (4) — следствие системы (1), причем где и —многочлены, то система (1) равносильна совокупности систем
4°. Система (1) равносильна каждой из следующих систем:
5°. Если уравнение равносильно уравнению где — многочлен от и , то система (1) равносильна системе
Это утверждение лежит в основе метода исключения неизвестных: система (1) сводится к системе (5), (6) с двумя неизвестными.
Прежде чем переходить к примерам алгебраических систем с тремя неизвестными, отметим, что нет общих рецептов для нахождения решений систем. Каждый раз нужно учитывать конкретные особенности рассматриваемой системы. Можно дать только общий совет: решайте побольше задач.
Рассмотрим сначала системы с тремя неизвестными, которые сводятся к кубическим уравнениям.
К таким системам относятся системы симметрических алгебраических уравнений, т.е. системы вида (1), где , , — многочлены, каждый из которых не меняется, если поменять местами любую пару из переменных , , .
В этом случае удобно ввести следующие переменные:
Простейший пример системы рассматриваемого вида — система
Система (7) и кубическое уравнение
связаны следующим образом.
Если , , — корни уравнения (8), то система (7) имеет шесть решений: получаемых всевозможными перестановками трех чисел , , . Обратно, если решение системы (7), то , , — корни уравнения (8).
Доказательство этого утверждения основано на использовании формул Виета для корней уравнения (8):
Для сведения к системам (7) систем симметрических уравнений вида
можно использовать следующие тождества:
Примеры с решениями
Пример №186.
Решить систему уравнений
Решение:
Используя уравнения (12), (13) и тождество (9), получаем
Применяя формулу (11) и учитывая равенства (13)-(15), находим
Следовательно, исходная система равносильна системе вида (7), в которой , а уравнение (8) имеет вид
Корни этого уравнения — числа Поэтому система имеет шесть решений, получаемых перестановкой чисел
Ответ.
Обратимся теперь к системам с тремя неизвестными, которые не являются симметрическими.
Пример №187.
Решить систему уравнений
Решение:
Так как правые части уравнений отличны от нуля, то Полагая получаем систему линейных уравнений
Сложив уравнения системы (16), находим
Из (16) и (17) получаем т. е.
Перемножив почленно уравнения системы (18), которая равносильна исходной, имеем откуда
или
Следовательно, исходная система равносильна совокупности систем (18), (19) и (18), (20), которые имеют решения и соответственно.
Ответ.
Пример №188.
Решить систему уравнений
Решение:
Будем решать систему методом исключения неизвестных и сведением, в конечном счете, к одному уравнению с одним неизвестным. Складывая почленно уравнения (21) и (23), получаем
Так как на основании равенства (24), то из этого равенства следует, что
Запишем далее уравнение (22) в виде
Исключив из уравнений (24) и (26), получаем откуда
Заметим, что система (27), (25), (21) равносильна системе (21)— (23). Подставляя выражения для и из формул (27) и (25) в уравнение (21), получаем
или откуда Соответствующие значения и найдем по формулам (27) и (25).
Ответ.
Пример №189.
Решить систему уравнений
Решение:
Перемножив уравнения системы (28), получаем
или
Уравнение (29) является следствием системы (28), которая равносильна системе
Уравнения (30), (31), (32) имеют решения соответственно. С учетом равенства (29) находим четыре решения системы (28).
Ответ.
Пример №190.
Найти решения системы уравнений
удовлетворяющие условию
Решение:
Вычитая из уравнения (34) уравнение (33), получаем
Далее, вычитая из уравнения (35) уравнение (33), находим
Наконец, складывая уравнения (34) и (35), получаем
Система (37)-(39) равносильна системе (33)-(35), а при условии (36) — системе линейных уравнений
имеющей единственное решение
Ответ.
Пример №191.
Решить систему уравнений
Решение:
Вычтем из уравнения (41) уравнение (40) и преобразуем полученное уравнение к виду
Выполнив ту же операцию с уравнениями (42) и (41), имеем
Система (43), (44), (42), равносильная системе (40)-(42), распадается на следующие четыре системы:
Полученные системы легко решаются методом исключения неизвестных. Объединив решения этих систем, найдем все решения исходной системы.
Ответ.
Пример №192.
Решить систему уравнений
Решение:
Решим эту систему как линейную относительно Для этого сложим попарно уравнения системы (45) и получим систему
Перемножив уравнения системы (46) и полагая находим или откуда т. е.
Система (45) в силу утверждения 3° равносильна совокупности систем (46), (47) и (46), (48), каждая из которых имеет единственное решение.
Ответ.
Пример №193.
Решить систему уравнений
Решение:
Если , то из системы (49) следует, что , а может принимать любые значения. Аналогично, если , то , — любое. Таким образом, система имеет бесконечное множество решений вида
Будем искать решения системы (49) такие, что . Умножив первое уравнение системы (49) на , а третье — на и сложив результаты, получим
Прибавив к уравнению (51) второе уравнение системы (49), умноженное на :, находим
Каждое из уравнений (51), (52) является следствием системы (49).
Так как , , — действительные числа (требуется найти действительные решения системы), то уравнение (52) равносильно уравнению
Исключая из уравнений (53) и (51), получаем
Уравнения (53) и (54) являются следствиями системы (49), а уравнение (54) равносильно совокупности уравнений
Из (55) и (53) следует, что , а из системы (49) при и находим Полученное решение содержится среди решений (50).
Из (56) и (53) следует, что Подставляя в систему (49), находим решения и
Ответ. — любое действительное число;
Этот материал взят со страницы решения задач с примерами по всем темам предмета математика:
Возможно вам будут полезны эти страницы: