Оглавление:
Метод выделения главной части функции и его применение к вычислению пределов
Метод выделения главной части функции и его применение к вычислению пределов. Дадим функции. Если функция P всех x∈X может быть выражена в виде Р(х)= а (Х)+ О(а(Х)), Х> Х、 В свою очередь, функция a называется основной частью функции при x> x0. Образцы. 1. поскольку x ^8m x = x + o(x), функция 8m x из x ^равна X. 2. Пн (х)= apxn + … + а х + а apΦ, функция apnnn является главной частью многочлена РП (х) в Х>. потому что Pn (x)= apnn + o (xn) для x>^. 267. Функция P. учитывая X ^ K, основная часть x ^ x не определена однозначно. Согласно теореме 1, p-эквивалентная функция X> X0, a, является основной частью x> X0.
Однако, если вы запросите определенный тип основной детали, этот разумный выбор может гарантировать, что основная часть указанного типа определена однозначно. Людмила Фирмаль
- Например, P = x + x2 + x3.С другой стороны, x2 + x3 = o (x) для x^, P = x + o (x) для x^ и xP = o (x + x2) для x^, поэтому、 P = х + Х2 + о (Х + Х2). В первом случае основную часть можно считать a = x. 2-й а = х + Х2. В частности, справедлива следующая Лемма. Лемма 5. X K, x∈K, x как предельная точка множества X. / Для функции P X ^ K для x ^ ^ x имеет основную часть вида a (X-x) Й, AΦ.Здесь A и V являются константами, которые определяются однозначно среди всех основных частей этой формы. Это справедливо только если A = A и V = ви. Я не уверен.
Понятие основной части функции полезно для изучения бесконечно малых и бесконечно малых чисел, оно используется при решении различных математических задач. analysis. In во многих случаях бесконечно сложная аналитическая форма в окрестности данной точки может быть заменена более простой (в некотором смысле) функцией с бесконечно малым высшим порядком. Например, P (x)=P (x) = A (x-x) d + o ((x-x) d), что является максимумом в случае x> x0, бесконечно малая бесконечность, бесконечно малая бесконечность (x), выше, чем (x-Xo) d, работает в окрестности Укажите на x как функцию, которая должна быть A (x-xo) d.
- В качестве примера мы покажем, как метод разделения основной части десятичной дроби применяется для расчета пределов function. In кроме того, широко используется полученное соотношение эквивалентности (8.26). Так что вам нужно найти предел(и таким образом доказать, что он существует). Используя вышеизложенное (см. отношения(8.26))、 Валентность 1N (1 + u)〜и u ^имеют 1n (1 + x + x)—x + x в x^, поэтому (см. теорему 1) 1n (1 + x + x)= = х + Х2 + о(Х + Х2).Однако o (x + x2)= o(x) (почему?) И быть X>x2 = o (x)、 Кроме того, агентство работает от 3 до 3 раз、 agszx 3х = 3х + о(Х3)= Х3 + о(Х). Также ясно, что это 5x = o (x).Из асимптотического уравнения получаем 8W 2x-2×8 Вт Х2 = Х2 + о (Х2)= 2х + о(Х).
Двадцать два от Х-Х a ^ 2 x = x2 + o (x2)= o (x), и(ex-1)5〜x5, аналогично、 (Пример-1) 5 = x5 + o(x5)= o(x). Все эти отношения справедливы для x^. Теперь у нас есть 1П(1 + х + х2)+ х3 ags81n-5×3 = = Х + О (х)+ 3х + о(Х) О (х)= 4х + о(Х)、 81n 2x + 1 ^ 2 x +(ex-1) 5 = 2x + o (x)+ o (x)= 2x + o (x), следовательно Однако по теореме 4 ^ + o (x)〜4x, а x ^2x + o (x) 2x Итак, предел искомого существует и равен 2. При вычислении пределов функции с использованием метода разделения основной части следует отметить, что если она не учитывается в разделе 8.3, то, в общем случае, заменить десятичную дробь эквивалентной не представляется возможным.
Метод расчета лимитов путем выделения основной части функции очень удобен, прост и в то же время очень популярен. Людмила Фирмаль
- Например 。 S1P в Х-Х При нахождении предела формулы 11t p-это х<sup class=»reg»>®</sup>х Ошибочно замените функцию 81n x эквивалентной функцией x из x^. Естественный способ решения такой задачи описан в разделе 13.4. чтобы найти предел выражения в виде н (х) г (х), рекомендуется найти предел логарифма. Рассмотреть 1 / Х2 Хороший пример. Найти предел 11T сои 2x. равенства Некоторые сложности в работе приложения связаны с тем, что до сих пор не существует достаточно популярного способа выделения основной части функции. Эта проблема будет устранена в будущем (см.§ 13). Поскольку экспонента непрерывна, из(8.38).
Смотрите также:
Сравнение функций. | Определение производной. |
Эквивалентные функции. | Дифференциал функции. |