Первое достаточное условие существования экстремума функции
Теорема. Пусть точка
является критической точкой функции
, а сама функция
непрерывна и дифференцируема во всех точках некоторого интервала, содержащего эту точку. Тогда:
- Если при
, а при
, то при
имеет место максимум, т. е. если при переходе слева па право через критическую точку первая производная функции меняет знак с « + » на «- », то в этой точке функция достигает максимума. - Если при
, а при
, то при
имеет место минимум, иначе если при переходе слева па право через критическую точку
меняет знак с «- » на « + », то в этой точке функция достигает минимума. - Если при переходе через критическую точку
не меняет знак, то экстремума нет.
Этот материал взят со страницы кратких лекций с решением задач по высшей математике:
Решение задач по высшей математике
Возможно эти страницы вам будут полезны:

