Для связи в whatsapp +905441085890

Метод областей для решения уравнений

Метод областей — обобщение метода интервалов

Если требуется решить уравнение (неравенство) с двумя неизвестными x и у, например, вида

Метод областей для решения уравнений

(под знаком модуля содержатся выражения от двух неизвестных), то прибегают к аналогу метода интервалов на плоскости — методу областей.

Отличие его от метода интервалов состоит в следующем. Если в методе интервалов приравнивались к нулю подмодульные выражения и находились точки x на числовой прямой, в которых каждое из подмодульных выражений могло поменять знак, то теперь, приравнивая выражения под знаком модуля к нулю, будем получать некоторые кривые, которые разбивают координатную плоскость на области. Перебирая поочерёдно все области, в каждой из них раскрывают с соответствующим знаком имеющиеся в задаче модули, и затем изображают графически в виде кривой или иной фигуры на плоскости решение полученного уравнения (неравенства) в рассматриваемой области. В заключение следует объединить полученные по всем областям результаты и пересечь их с ОДЗ.

Пример №269.

Изобразить на координатной плоскости геометрическое место точек (х;y), координаты которых удовлетворяют уравнению

Метод областей для решения уравнений

Решение:

Воспользуемся методом областей. Приравняв к нулю подмодульные выражения, получаем уравнения двух прямых y = x и у = 2. Указанные прямые разбивают всю координатную плоскость Оху на четыре области. Рассмотрим поочерёдно каждую из областей, раскрывая в ней модули.

Например, первый модуль раскрывается со знаком «плюс» там, где Метод областей для решения уравнений т.е. во II и III областях, и со знаком «минус» соответственно в I и IV областях.

Метод областей для решения уравнений

Второй модуль раскрывается со знаком «плюс» там, где Метод областей для решения уравнений т.е. в I и II областях, и со знаком «минус» соответственно в III и IV областях.

Область I: после раскрытия модулей уравнение принимает вид — Метод областей для решения уравнений Таким образом, в данной области искомое ГМТ представляет собой отрезок прямой Метод областей для решения уравнений попадающий в эту область.

Область II: после раскрытия модулей уравнение принимает вид

Метод областей для решения уравнений
Метод областей для решения уравнений

Таким образом, в данной области искомое ГМТ представляет собой часть прямой у = 3 , попадающую в эту область.

Область III: после раскрытия модулей уравнение принимает видМетод областей для решения уравненийи не имеет решений. Поэтому в данной области ГМТ отсутствует.

Область IV: после раскрытия модулей уравнение принимает вид

Метод областей для решения уравнений

Таким образом, в данной области искомое ГМТ представляет собой часть прямой Метод областей для решения уравнений попадающую в эту область. Объединяя полученные ГМТ, строим окончательно фигуру (см. рис. выше). Задача решена.

Пример №270.

Найти площадь фигуры, заданной неравенством

Метод областей для решения уравнений

Решение:

Построим указанную фигуру. Прямые Метод областей для решения уравнений и Метод областей для решения уравнений разбивают координатную плоскость на четыре области.

В I области (см. рис.) оба модуля раскрываются положительно, и неравенство принимает вид Метод областей для решения уравнений Пересечение полуплоскос-ти, задаваемой этим неравенством, и I области, образует часть искомой фигуры. Во II области 1-й модуль раскрывается положительно, а второй — отрицательно, в результате получаем неравенствоМетод областей для решения уравнений

Метод областей для решения уравнений

Достраиваем вторую часть фигуры. В III области, аналогично действуя, получаем Метод областей для решения уравнений а в IV области, соответственно, Метод областей для решения уравнений Объединяя все четыре части, получаем искомую фигуру в виде параллелограмма.

Очевидно, что длина верхней стороны параллелограмма равна 3, длина высоты, проведённой к этой стороне (её роль выполняет меньшая диагональ параллелограмма), также равна 3. Искомая площадь фигуры равна произведению длин указанных отрезков. Ответ: 9 кв.ед.

Построение на плоскости Метод областей для решения уравнений фигуры, задаваемой уравнением

Метод областей для решения уравнений

или неравенством

Метод областей для решения уравнений

(знак Метод областей для решения уравнений заменяет любой из знаков неравенства), можно значительно упростить, если эта фигура обладает свойством симметрии относительно координатных осей или прямых, им параллельным. Так, если, например, функция Метод областей для решения уравнений чётна относительно переменной Метод областей для решения уравнений, т.е. для всех допустимых Метод областей для решения уравненийи Метод областей для решения уравненийвыполняется равенство

Метод областей для решения уравнений

то фигура, определяемая уравнением (1) или неравенством (2), будет симметрична относительно прямой Метод областей для решения уравненийось ординат Метод областей для решения уравнений), а если функция Метод областей для решения уравнений чётна относительно переменной Метод областей для решения уравнений, т.е. для всех допустимых Метод областей для решения уравнений и Метод областей для решения уравненийвыполняется равенство

Метод областей для решения уравнений

то фигура, определяемая (1) или (2), симметрична относительно прямой Метод областей для решения уравнений (ось абсцисс Метод областей для решения уравнений ).

Пользуясь аналогичными рассуждениями, можно заметить, что, например, уравнение Метод областей для решения уравнений задаёт на плоскости фигуру, симметричную относительно прямых Метод областей для решения уравнений и Метод областей для решения уравнений В этом случае при построении данной фигуры достаточно изобразить её, например, только в областиМетод областей для решения уравнений, Метод областей для решения уравнений, а затем достроить полученный участок симметрично осей симметрии фигуры.

Подумайте, какой вывод о свойствах фигуры можно сделать в случае, когда функция Метод областей для решения уравнений удовлетворяет условию

Метод областей для решения уравнений

Пример №271.

Найти площадь фигуры, заданной неравенством

Метод областей для решения уравнений

Решение:

Заметим, что при замене в данном неравенстве Метод областей для решения уравнений на Метод областей для решения уравнений значение функции в левой части неравенства не изменится.

Метод областей для решения уравнений

Это означает, что данная фигура симметрична относительно оси ординат. Аналогично заметим, что ничего не изменится и при замене Метод областей для решения уравнений наМетод областей для решения уравнений т.е. фигура к тому же обладает свойством симметрии относительно оси абсцисс.

Поэтому достаточно построить фигуру, например, в первой четверти, а затем отобразить её симметрично обеим координатным осям.

В области I (см. рис.) раскрываем модули и получаем,что

Метод областей для решения уравнений

т.е. Метод областей для решения уравнений. В области II соответственно получаем:

Метод областей для решения уравнений

т.е. Метод областей для решения уравнений Используя симметрию относительно координатных осей, достраиваем фигуру: это шестиугольник площади 6 кв.ед.

Пример №272.

Изобразить на координатной плоскости Метод областей для решения уравнений множество точек, координаты которых удовлетворяют условию

Метод областей для решения уравнений

Решение:

Это условие равносильно условию Метод областей для решения уравненийОДЗ:Метод областей для решения уравнений Так как функция Метод областей для решения уравнений удовлетворяет условию Метод областей для решения уравненийто искомая фигура центрально симметрична относительно начала координат. Поэтому построим её вначале в 1-й и 4-й четвертях.

1) Пусть Метод областей для решения уравнений тогда условие примет вид

Метод областей для решения уравнений

2) Пусть Метод областей для решения уравнений тогда получим условие в виде

Метод областей для решения уравнений

В 1-й и 4-й четвертях имеем бесконечную совокупность отдельных точек, образованных пересечениями соответствующих прямых (см. рис.):

Метод областей для решения уравнений

Для получения искомой фигуры осталось центрально симметрично достроить полученное множество в левую полуплоскость.

Эта лекция взята со страницы, где размещён подробный курс лекций по предмету математика:

Предмет математика

Эти страницы возможно вам будут полезны:

Раскрытие модулей но определению в математике с примерами решения
Метод интервалов для модульных уравнений с примерами решения
Раскрытие модуля, используя его геометрический смысл с примером решения
Раскрытие модулей на ОДЗ в математике с примерами решения