Большую роль в математическом анализе имеет дробь двух бесконечно малых величин. Предел дроби может иметь разные значения. Всего существует четыре разных случая для предела дроби бесконечно малых величин и .
1. Если , то называется бесконечно малой высшего порядка малости по сравнению с , при этом — бесконечно малая низшего порядка малости по сравнению с .
2. Если , то называется бесконечно малой низшего порядка малости по сравнению с , при этом — бесконечно малая высшего порядка малости по сравнению с .
3. Если , то и называется бесконечно малыми одного порядка малости.
В частном случае, две бесконечно малых и называются эквивалентными, если предел их дроби равен единице:
4. Если не существует, то и называется несравнимыми бесконечно малыми.
Эта лекция взята с этой страницы, там вы найдёте все темы лекций по высшей математике для студентов 1 курса:
Возможно вам будут полезны эти страницы:
Свойства пределов в высшей математике |
Кратко о двух замечательных пределов |
Эквивалентные бесконечно малые величины: теоремы и таблица |
Непрерывность функции |