Для связи в whatsapp +905441085890

Решение квадратных уравнений с отрицательным дискриминантом

Рассмотрим решение квадратных уравнений, дискриминант которых отрицателен:

Пример №42.4.

Решить уравнение: Решение квадратных уравнений с отрицательным дискриминантом.

Решение:

Найдем дискриминант: Решение квадратных уравнений с отрицательным дискриминантом.

Решение квадратных уравнений с отрицательным дискриминантом

Тогда Решение квадратных уравнений с отрицательным дискриминантом.

Ответ: Решение квадратных уравнений с отрицательным дискриминантом.

Видим, что если дискриминант квадратного уравнения отрицателен, то уравнение имеет решения на множестве комплексных чисел. В ответе получаются два сопряженных комплексных числа. Это очень важный результат: теперь мы знаем, что абсолютно любое квадратное уравнение имеет два корня на множестве комплексных чисел.

Подобное утверждение, известное под названием «основная теорема алгебры», было доказано Гауссом в конце XVIII века: любое алгебраическое уравнение Решение квадратных уравнений с отрицательным дискриминантом-й степени имеет Решение квадратных уравнений с отрицательным дискриминантом комплексных корней (при этом некоторые корни являются кратными). Эти результаты подчеркивают ту исключительную роль, которую играют комплексные числа в теории алгебраических уравнений.

Эта лекция взята с главной страницы на которой находится курс лекций с теорией и примерами решения по всем разделам высшей математики:

Предмет высшая математика

Другие лекции по высшей математике, возможно вам пригодятся:

Алгебраическая форма комплексного числа.
Действия над комплексными числами в алгебраической форме.
Геометрическая интерпретация комплексных чисел.
Понятие модуля и аргумента комплексного числа.