Напомним определение возрастающей и убывающей функции на интервале .
Функция называется возрастающей на интервале , если большему значению аргумента соответствует большее значение функции, т.е. если , , , то .
Пример возрастающей функции приведен на рис. 14.1.
Функция называется убывающей на интервале , если большему значению аргумента соответствует большее значение функции, т.е. если , , , то .
Пример убывающей функции приведен на рис. 14.2.
Интервалы, в которых функция либо только возрастает, либо только убывает, называются интервалами монотонности.
Сформулируем критерий возрастания и убывания функции:
Теорема. Пусть — дифференцируемая на интервале функция. Функция возрастает на тогда и только тогда, когда её производная больше или равна нулю в любой точке этого промежутка.
Функция убывает на тогда и только тогда, когда ее производная меньше или равна нулю в любой точке этого промежутка.
Представим критерий возрастания и убывания функции в виде схемы:
Эта лекция взята с главной страницы на которой находится курс лекций с теорией и примерами решения по всем разделам высшей математики:
Другие лекции по высшей математике, возможно вам пригодятся:
Понятие дифференциала высших порядков |
Правило Лопиталя |
Понятие точек экстремума и экстремумов функции |
Необходимые условия существования экстремума |