Для связи в whatsapp +905441085890

До какого потенциала  можно зарядить удаленный от других тел цинковый шарик, облучая его ультрафиолетовым излучением с длиной волны   200 нм ?

🎓 Заказ №: 21977
 Тип работы: Задача
📕 Предмет: Физика
 Статус: Выполнен (Проверен преподавателем)
🔥 Цена: 149 руб.

👉 Как получить работу? Ответ: Напишите мне в whatsapp и я вышлю вам форму оплаты, после оплаты вышлю решение.

➕ Как снизить цену? Ответ: Соберите как можно больше задач, чем больше тем дешевле, например от 10 задач цена снижается до 50 руб.

➕ Вы можете помочь с разными работами? Ответ: Да! Если вы не нашли готовую работу, я смогу вам помочь в срок 1-3 дня, присылайте работы в whatsapp и я их изучу и помогу вам.

 Условие + 37% решения:

До какого потенциала  можно зарядить удаленный от других тел цинковый шарик, облучая его ультрафиолетовым излучением с длиной волны   200 нм ? ( Ацинка  3,74 эВ )

Решение Шарик будет заряжаться вследствие фотоэффекта (вырывание фотоэлектронов с поверхности). Фотоэффект прекратится тогда, когда величина потенциала  достигнет такого значения, что работа сил электростатического e поля будет равна кинетической энергии T вылетающих электронов. По закону сохранения энергии можем записать: T  e Где e Кл 19 1,6 10   – абсолютное значение заряда электрона. Запишем формулу Эйнштейна для фотоэффекта: h  АT Где h   Дж  с 34 6,62 10 – постоянная Планка;  – частота света; A – работа выхода электрона из металла. Тогда из двух последних выражений имеем: h  А e Запишем связь между длиной волны  и частотой  :

До какого потенциала  можно зарядить удаленный от других тел цинковый шарик, облучая его ультрафиолетовым излучением с длиной волны   200 нм ? ( Ацинка  3,74 эВ )
Научись сам решать задачи изучив физику на этой странице:
Услуги:

Готовые задачи по физике которые сегодня купили:

  1. Определить число электронов, проходящих в секунду через единицу площади поперечного сечения железной проволоки длиной 20 м при напряжении на её концах 16 В.
  2. Металлический шар радиусом ( R  3см ) опущен наполовину в керосин.
  3. Напряженность электрического поля, созданная длинной трубкой радиусом 2 см на расстоянии 3 см от ее оси равно 75,5 В/м.
  4. Два параллельных длинных провода, по которым текут в одном направлении одинаковые токи I  31 А , находятся на расстоянии a  51,0 см друг от друга.
  5. Считая, что спектральное распределение энергии теплового излучения подчиняется формуле Вина   T r T A e      3 , , где   7,64 пс  К , найти для температуры Т=2000 К наиболее вероятную: а) частоту излучения; б) длину волны излучения.
  6. Тонкий длинный стержень равномерно заряжен с линейной плотностью 1,5 нКл/м.
  7. Найти силу, действующую на точечный заряд в 2/3 нКл, если заряд расположен на расстоянии 2 см от заряженной нити с линейной плотностью 2 Кл/см.
  8. Излучение Солнца по своему спектральному составу близко к излучению абсолютно черного тела, для которого максимум излучательной способности приходится на длину волны 0,48 мкм.
  9. Колебательный контур состоит из конденсатора емкостью 0,2 мкФ и катушки индуктивностью 5,07 мГн и имеет логарифмический декремент затухания 0,22.
  10. Вычислить потенциал, создаваемый тонким равномерно заряженным стержнем с линейной плотностью заряда τ = 10 нКл/м в точке расположенной на оси стержня и удалённой от ближайшего конца стержня на расстояние, равное длине стержня.